Universidad Nacional de San Cristóbal de Huamanga

Facultad de Ingeniería de Minas, Geología y Civil

Escuela de Formación Profesional de Ingeniería Civil

"ANÁLISIS Y PROPUESTA DE REAJUSTE DE LOS COEFICIENTES DE AMPLIFICACIÓN DE CARGA PARA LA NORMA TÉCNICA E060"

PRESENTADO POR: Max Junior CÁRDENAS ALARCÓN

ASESOR: Ing. Javier Francisco TAIPE CARBAJAL

28 de octubre de 2016

"ANÁLISIS Y PROPUESTA DE REAJUSTE DE LOS COEFICIENTES DE AMPLIFICACIÓN DE CARGA PARA LA NORMA TÉCNICA E060"

RECOMENDADO : 22 DE SETIEMBRE DEL 2016

APROBADO : 21 DE OCTUBRE DEL 2016

MSc. Ing. Cristian CASTRO PEREZ (PRESIDENTE)

MSc. Ing. Norbertt L. QUISPE AUCCAPUCLLA (MIEMBRO)

avier F. TAIPE CARBAJAL MSc. Jng. (MIEMBRO)

Arg. Juan C. SANCHEZ PAREDES (SECRETARID DOCENTE)

Según el acuerdo constatado en el acta, levantado el 21 de octubre del 2016, en la sustentación de tesis presentado por el Bachiller en Ciencias de la Ingeniería Civil Sr. Max Junior CARDENAS ALARCON. Con la Tesis Titulado "ANÁLISIS Y PROPUESTA DE REAJUSTE DE LOS COEFICIENTES DE AMPLIFICACIÓN DE CARGA PARA LA NORMA TÉCNICA E060", fue calificada con la nota de QUINCE (15) por los que se da la respectiva APROBACIÓN.

MSc. Ing. Cristian CASTRO PEREZ (PRESIDENTE)

MSc. Ing. Norbertt L. QUISPE AUCCAPUCLLA (MIEMBRO)

MSc. Ing. Javier F. TAIPE CARBAJAL (MIEMBRO)

Arq. Juan C. SANCHEZ PAREDES CRETARIO DOCENTE) (SE

Presentación

Esta tesis es presentada como parte de los requisitos para optar el título académico de Ingeniero Civil, de la Universidad Nacional San Cristóbal de Huamanga, la misma contiene los resultados obtenidos en investigaciones llevadas a cabo en el periodo 2015-2016.

> Max Junior Cárdenas Alarcón http://cvmax.wordpress.com/ jumax12@hotmail.com Escuela Profesional de Ingeniería Civil Universidad Nacional San Cristóbal de Huamanga Ayacucho, Octubre de 2016

Dedicatoria

Dedico este trabajo a mis queridos padres y hermanos, compañeros de toda una vida.

•

Agradecimientos

- A la Universidad Nacional San Cristóbal de Huamanga y todos los Catedráticos de la Escuela Profesional de Ingeniería Civil.
- A mis padres y hermanos por su apoyo incondicional en mi carrera profesional.
- A mi asesor el Ing. Javier Fransisco Taipe Carbajal por brindarme sus consejos para realizar esta tesis.
- Agradezco también a la empresa MathWorks por la distribución del entorno de desarrollo integrado de programación MATLAB and Simulink Student, con la cual se facilitaron los cálculos numéricos del presente trabajo.
- A la comunidad de usuarios de LATEX, al grupo que mantiene la distribución para el sistema operativo Windows y a los creadores del editor TexMaker, sin la cual hubiera sido casi imposible el cuidado y la presentación impecable de la presente tesis.

Resumen

El objetivo principal de esta tesis es realizar una crítica a los *Coeficientes de Amplificación de Carga* de la Norma Técnica E060 y proponer un cambio en estos coeficientes, por medio de un *Análisis de confiabilidad Estructural*, estos análisis se basan en el cálculo de un índice de confiabilidad β relacionado con la probabilidad de falla de un elemento analizado. En la obtención de estos índices β , se analizaron diversos factores como son las cargas de diseño, la resistencia de concreto y la fluencia del acero por procesos estadísticos y métodos numéricos como la Simulación MonteCarlo. Los resultados obtenidos muestran una disminución de estos valores los cuales son justificados en la realización de este trabajo.

PALABRAS CLAVES:

Norma Técnica E060, Indice de confiabilidad, Probabilidad de falla, Simulación MonteCarlo, Factores de amplificación de carga.

Summary

The main objective of this thesis is to critique Amplification Coefficients Charging current Norma Técnica E060 and propose a change in the values of these coefficients, by a Structural Reliability Analysis, these analyzes are based on the calculation of a reliability index β associated with the probability of failure of an element analyzed. In obtaining these indices β , various factors such as the design loads, the strength of concrete and steel creep through statistical processes and numerical methods were analyzed using MonteCarlo Simulation. The results show a decrease of these values which are justified in carrying out this work.

KEY WORDS:

Norma Técnica E060, Index of Reliability, Probability of failure, MonteCarlo Simulation, Load Amplification Factors.

Índice general

Por	tada	L
-----	------	---

Pr	esen	tación	I
De	edica	atoria	п
A	grade	ecimientos	111
Re	esum	ien	IV
Su	mm	ary	v
Ín	dice	General	VI
Ín	dice	de Figuras	XIII
Ín	dice	de Cuadros	xx
Li	sta d	le Siglas y Símbolos	XXVI
1.	Inti	RODUCCIÓN.	1
	1.1.	Antecedentes	. 1
	1.2.	Justificación e Importancia.	. 2
	1.3.	Planteamiento del Problema	. 3
		1.3.1. Definición del Problema y su Posible Solución	. 4

	1.4.	Formu	lación de los Objetivos	4
		1.4.1.	Objetivos específicos	4
	1.5.	Plante	amiento de las Hipótesis	5
	1.6.	Variab	les e Indicadores	5
		1.6.1.	Variables Independientes.	6
		1.6.2.	Variables Dependientes.	6
		1.6.3.	Metodología Detallada	7
	1.7.	Tipo y	Nivel de Investigación.	7
		1.7.1.	Tipo de Investigación.	7
		1.7.2.	Nivel de Investigación.	7
		1.7.3.	Diseño de la Investigación.	8
	1.8.	Técnic	as de Recolección y Procesamiento de Datos	8
	1.9.	Alcano	es y Limitaciones.	8
	1 10	Organi	zación del Estudio.	g
	1.10	0180		0
	1.10	- Organi	·	U
2.	MAF	rco Te	órico.	11
2.	MAF 2.1.	RCO TE	ÓRICO. leraciones Generales.	11 11
2.	MAF 2.1.	Consid 2.1.1.	ÓRICO. leraciones Generales	11 11 12
2.	MAF 2.1. 2.2.	Consid 2.1.1. Teoría	ORICO. leraciones Generales	11 11 12 13
2.	MAF 2.1. 2.2.	Consid 2.1.1. Teoría 2.2.1.	ÓRICO. leraciones Generales	 11 11 12 13 13
2.	MAF 2.1. 2.2.	Consid 2.1.1. Teoría 2.2.1. 2.2.2.	SÓRICO. leraciones Generales. Principio del Diseño Estructural Basado en Confiabilidad. De La Confiabilidad. Antecedentes. Estados Límites y Variables Básicas.	11 11 12 13 13 14
2.	MAF 2.1. 2.2.	Consid 2.1.1. Teoría 2.2.1. 2.2.2. 2.2.3.	dórico. leraciones Generales	 11 11 12 13 13 14 15
2.	MAF 2.1. 2.2.	Consid 2.1.1. Teoría 2.2.1. 2.2.2. 2.2.3. 2.2.4.	DÓRICO. leraciones Generales	 11 11 12 13 13 14 15 16
2.	MAF 2.1. 2.2.	Consid 2.1.1. Teoría 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5.	BÓRICO. Principio del Diseño Estructural Basado en Confiabilidad. De La Confiabilidad. Antecedentes. Estados Límites y Variables Básicas. Tipos De Incertidumbres. Funciones De Estados Límite y Variables Básicas. Probabilidad De Falla.	11 11 12 13 13 13 14 15 16 17
2.	MAF 2.1. 2.2. 2.3.	Consid 2.1.1. Teoría 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. Métod	MÓRICO. leraciones Generales. Principio del Diseño Estructural Basado en Confiabilidad. De La Confiabilidad. Antecedentes. Estados Límites y Variables Básicas. Tipos De Incertidumbres. Funciones De Estados Límite y Variables Básicas. Probabilidad De Falla. os De Cálculo Para Confiabilidad.	11 11 12 13 13 14 15 16 17 19
2.	MAF 2.1. 2.2. 2.3.	Consid 2.1.1. Teoría 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. Métod 2.3.1.	MÓRICO. Principio del Diseño Estructural Basado en Confiabilidad. De La Confiabilidad. Antecedentes. Estados Límites y Variables Básicas. Tipos De Incertidumbres. Funciones De Estados Límite y Variables Básicas. Probabilidad De Falla. Os De Cálculo Para Confiabilidad.	11 11 12 13 13 14 15 16 17 19 20
2.	MAF 2.1. 2.2. 2.3.	Consid 2.1.1. Teoría 2.2.1. 2.2.2. 2.2.3. 2.2.4. 2.2.5. Métod 2.3.1. 2.3.2.	JÓRICO. leraciones Generales. Principio del Diseño Estructural Basado en Confiabilidad. De La Confiabilidad. Antecedentes. Estados Límites y Variables Básicas. Tipos De Incertidumbres. Funciones De Estados Límite y Variables Básicas. Probabilidad De Falla. Os De Cálculo Para Confiabilidad. Método De Primer Orden (FORM).	11 11 12 13 13 14 15 16 17 19 20 22

	2.4.	Conce	eptos Básicos de Cargas de Diseño.		
		2.4.1.	Cargas Permanentes en Edificios.	29	
		2.4.2.	Cargas Vivas en Edificios.	30	
			2.4.2.1. Carga Sostenida.	30	
			2.4.2.2. Carga Extraordinaria.	32	
			2.4.2.3. Carga Extraordinaria Máxima.	33	
			2.4.2.4. Carga Total Máxima	35	
		2.4.3.	Cargas Laterales en Edificios.	36	
			2.4.3.1. Carga Sísmica.	36	
			2.4.3.2. Carga por Viento	38	
	2.5.	Calibr	ación De Los Códigos De Diseño Estructural.	40	
		2.5.1.	Confiabilidad y Factores Parciales.	40	
		2.5.2.	Objetivo De La Calibración	42	
		2.5.3.	Procedimiento Práctico De Calibración De Códigos	43	
		2.5.4.	Valores Óptimos De Confiabilidad Estructural	45	
		2.5.5.	Combinaciones de Carga en Las Norma de Diseño.	48	
	2.6.	Diseño	o por Estados Límites	49	
		2.6.1.	Antecedentes.	49	
		2.6.2.	Estado Límite de Resistencia.	50	
		2.6.3.	Estado Límite de Servicio.	50	
		2.6.4.	Estado Límite de Evento Extremo.	51	
		2.6.5.	Calibración de Factores de Carga y Resistencia.	52	
3.	Ma	FRIAL	es y Métodos	54	
0.	3.1	Defini	ción de Funciones de Falla	54	
	Q .1.	3.1.1	Análisis de la Flexión Pura	55	
		G. I. I.	3111 Modelo Matemático Utilizado para Flexión	58	
		312	Análisis de la Fuerza Cortante	59	
		، است ، س	A A A A A A A A A A A A A A A A A A A		

			3.1.2.1.	Modelo Matemático Utilizado para Cortante	62
		3.1.3.	Análisis	de Deflexiones	63
			3.1.3.1.	Modelo Matemático Utilizado para Deflexiones	66
		3.1.4.	Análisis	de Distorsiones.	70
			3.1.4.1.	Modelo Matemático Utilizado para Distorsiones	75
	3.2.	Descri	pción Est	adística De Las Variables Básicas	78
		3.2.1.	Análisis	Estadístico de la Carga Muerta.	79
			3.2.1.1.	Parámetros Estadísticos de la Carga Muerta	80
		3.2.2.	Análisis	Estadístico de la Carga Viva	80
			3.2.2.1.	Cargas Vivas Máximas en Oficinas	81
			3.2.2.2.	Cargas Vivas Máximas en Aulas de Clase	85
			3.2.2.3.	Cargas Vivas Máximas en Vivienda.	88
			3.2.2.4.	Cargas Vivas Máximas en Cuartos de Hotel	90
			3.2.2.5.	Parámetros Estadísticos de la Carga Viva	93
		3.2.3.	Análisis	Estadístico de la Resistencia a Compresión del Concreto	. 93
			3.2.3.1.	Parámetros Estadísticos de la Resistencia a Compre-	
				sión del Concreto.	99
		3.2.4.	Análisis	Estadístico del Esfuerzo de Fluencia del Acero	99
			3.2.4.1.	Parámetros Estadísticos del Esfuerzo de Fluencia del	
				Acero	103
		3.2.5.	Resumer	ı de las Variables Básicas	104
4.	Aná	LISIS Y	DISCUC	ión de Resultados.	105
	4.1.	Indices	s de Conf	abilidad.	105
		4.1.1.	Combina	aciones de Diseño De La Norma Técnica E060.	105
		4.1.2.	Consider	caciones en el Análisis de Confiabilidad.	106
		4.1.3.	Factores	de Amplificación de Carga y Reducción de Resistencia	
			en el An	álisis	107

1

	4.1.4.	Análisis	de Confiabilidad de la COMB. 01 - ELRS 1	.07
		4.1.4.1.	Análisis de Confiabilidad en Flexión - COMB. 01 1	.07
		4.1.4.2.	Análisis de Confiabilidad para Cortante - COMB. 01. 1	12
		4.1.4.3.	Análisis de Confiabilidad para Deflexiones - COMB.	
•			01	16
	4.1.5.	Análisis	de Confiabilidad de la COMB. 02 - ELRS 1	21
		4.1.5.1.	Análisis de Confiabilidad en Flexión - COMB. 02 1	21
		4.1.5.2.	Análisis de Confiabilidad para Cortante - COMB. 02. 1	25
		4.1.5.3.	Análisis de Confiabilidad para Deflexiones - COMB.	
			02	28
	4.1.6.	Análisis	de Confiabilidad de la COMB. 03 - ELEE 1	31
		4.1.6.1.	Análisis de Confiabilidad para Distorsión - COMB. 03.1	31
	4.1.7.	Análisis	de Confiabilidad de la COMB. 04 - ELEE 1	42
		1171	Análisis de Confighilidad para Distorsiones COMB	
		4.1.(.1.	Allansis de Collitabilidad para Distorsiones - COMD.	
		4.1.7.1.	04. 1	42
4.2.	Sensiti	vidad de	04. 1 las Variables Básicas. 1	42 48
4.2.	Sensiti 4.2.1.	widad de Variables	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1	42 48 48
4.2.	Sensiti 4.2.1. 4.2.2.	widad de Variable Análisis	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1 de Sensitividad de la COMB. 01 - ELRS. 1	42 48 48 48
4.2.	Sensiti 4.2.1. 4.2.2.	vidad de Variables Análisis 4.2.2.1.	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1 de Sensitividad de la COMB. 01 - ELRS. Sensitividad de las Variables Básicas en Flexión. 1	42 48 48 48 48
4.2.	Sensiti 4.2.1. 4.2.2.	4.1.7.1. avidad de Variables Análisis 4.2.2.1. 4.2.2.2.	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1 de Sensitividad de la COMB. 01 - ELRS. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1	42 48 48 48 48 52
4.2.	Sensiti 4.2.1. 4.2.2.	4.1.7.1. avidad de Variables Análisis 4.2.2.1. 4.2.2.2. 4.2.2.3.	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1 de Sensitividad de la COMB. 01 - ELRS. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Deflexión. 1	42 48 48 48 48 52 55
4.2.	Sensiti 4.2.1. 4.2.2. 4.2.3.	4.1.7.1. avidad de Variables Análisis 4.2.2.1. 4.2.2.2. 4.2.2.3. Análisis	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1 de Sensitividad de la COMB. 01 - ELRS. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Corte. 1 de Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Corte. 1 de Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las COMB. 02 - ELRS. 1	 42 48 48 48 52 55 58
4.2.	Sensiti 4.2.1. 4.2.2. 4.2.3.	 4.1.7.1. avidad de Variables Análisis 4.2.2.1. 4.2.2.2. 4.2.2.3. Análisis 4.2.3.1. 	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1 de Sensitividad de la COMB. 01 - ELRS. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Flexión. 1	 42 48 48 48 52 55 58 58
4.2.	Sensiti 4.2.1. 4.2.2. 4.2.3.	 4.1.7.1. avidad de Variables Análisis 4.2.2.1. 4.2.2.2. 4.2.2.3. Análisis 4.2.3.1. 4.2.3.2. 	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1 de Sensitividad de la COMB. 01 - ELRS. 1 de Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1 de Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1	 42 48 48 48 52 55 58 58 61
4.2.	Sensiti 4.2.1. 4.2.2. 4.2.3.	 4.1.7.1. avidad de Variables Análisis 4.2.2.1. 4.2.2.2. 4.2.2.3. Análisis 4.2.3.1. 4.2.3.2. 4.2.3.3. 	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1 de Sensitividad de la COMB. 01 - ELRS. 1 de Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Deflexión. 1	 42 48 48 48 52 55 58 61 63
4.2.	Sensiti 4.2.1. 4.2.2. 4.2.3.	 4.1.7.1. avidad de Variables Análisis 4.2.2.1. 4.2.2.2. 4.2.2.3. Análisis 4.2.3.1. 4.2.3.2. 4.2.3.3. Análisis 	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1 de Sensitividad de la COMB. 01 - ELRS. 1 de Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Deflexión. 1 de Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las COMB. 03 - ELEE. 1	 42 48 48 48 52 55 58 61 63 65
4.2.	Sensiti 4.2.1. 4.2.2. 4.2.3.	 4.1.7.1. avidad de Variables Análisis 4.2.2.1. 4.2.2.2. 4.2.2.3. Análisis 4.2.3.1. 4.2.3.2. 4.2.3.3. Análisis 4.2.4.1. 	04. 1 las Variables Básicas. 1 s Básicas Involucradas. 1 de Sensitividad de la COMB. 01 - ELRS. 1 de Sensitividad de las Variables Básicas en Flexión. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Corte. 1 Sensitividad de las Variables Básicas en Deflexión. 1 Sensitividad de las Variables Básicas en Distorsión. 1	 42 48 48 48 52 55 58 61 63 65 65

/

		4.2.5.1.	Sensitividad de las Variables Básicas en Distorsión.	169
4.3.	Aplica	ción a un	Proyecto Local.	171
	4.3.1.	Descripe	ión del Proyecto	171
	4.3.2.	Argume	ntos Requeridos para el Análisis	172
		4.3.2.1.	Descripción del proyecto.	172
		4.3.2.2.	Normas Empleadas.	173
		4.3.2.3.	Cargas de Diseño.	173
		4.3.2.4.	Diseño en Concreto Armado.	173
		4.3.2.5.	Materiales Usados.	174
	4.3.3.	Modelo	de la Estructura	174
	4.3.4.	Análisis	de la Estructura.	175
	4.3.5.	Obtencie	ón de Refuerzos	178
5. Co	NCLUSIC	DNES, RE	comendaciones e Investigaciones Futuras.	180
5.1.	Conclu	usiones.	· · · <i>· · · · · · · · · · · · · · · · </i>	180
5.2.	Recon	nendacion	es	186
5.3.	Lineas	5 Futuras	de Investigación	187
Refere	encias I	Bibliográ	ficas	188
A. Dia	igrama	s de Fluj	o y Códigos de Programación.	193
B. Ens	sayos a	Compre	esión.	215
C. An	álisis E	stadistic	o de los Datos.	220
D. Sig	nifican	cia Chi (Cuadrado.	223
E. Par	rámetro	os del Ai	nálisis de Confiabilidad.	226
F. Pro	ograma	s en Ma	tLab.	230

XI

G. Diseño de Concreto Armado Etabs.	235
H. Fotografias Hospital Regional de Ayacucho	237

1

Lista de Figuras

2.1.	Fuentes de incertidumbre estadística. Fuente: María Carmen Coronel	16
2.2.	Integración de la probabilidad de falla en dos dimensiones. Fuente:	
	María Carmen Coronel Uriona	18
2.3.	Integración de la probabilidad de falla en tres dimensiones. Fuente:	
	Luis Celorrio Barragué	19
2.4.	Ilustración de la Simulación de Monte Carlo. Fuente: Luis Celorrio	
	Barragué	21
2.5.	Zona de falla, $G = X_1 - X_2$. Fuente: María Carmen Coronel Uriona	25
2.6.	llustración del indice de confiabilidad y la probabilidad de falla. Φ es	
	la función de densidad normal estándar. Fuente: Luis Celorrio Barragué	26
2.7.	Algoritmo iterativo utilizado por FORM para encontrar β . Fuente:	
	María Carmen Coronel Uriona	28
2.8.	Modelo de carga sostenida instantánea. Fuente: Eric Gutiérrez Castillo	32
2.9.	Modelo de carga extraordinaria. Fuente: Eric Gutiérrez Castillo	32
2.10.	Modelo de carga viva total. Fuente: Eric Gutiérrez Castillo	35
2.11.	Definición de las derivas de entrepiso. Fuente: M. Nadim Hassoun	37
2.12.	Acción del viento sobre una estructura con techo a dos aguas. Fuente:	
	Luis Zapata Baglietto	39
2.13.	Probabilidad de falla vs. Parámetros de diseño. Fuente: Jorge Mario	
	Tocto Correa	44

2.14.	Diagrama de flujo para la calibración de códigos. Fuente: María Car-	
	men Coronel Uriona	45
3.1.	Proporcionalidad de deformaciones del concreto y acero. fuente: Pillai	
	Concreto Reforzado	56
3.2.	Curva esfuerzo-deformación del acero de refuerzo. Fuente: Teodoro	
	Harmsen	56
3.3.	Distribución de esfuerzos en el concreto en compresión de una sección	
	transversal. Fuente: James k. Wing	57
3.4.	Rajaduras de tracción diagonal. Fuente: James k. Wing	60
3.5.	Diagrama de fuerzas cortantes para el diseño de vigas. Fuente: James	
	k. Wing	61
3.6.	Curva momento-deflexión inmediata con inercia efectiva I_e . Fuente:	
	James k. Wing	67
3.7.	Sección transformada para el cálculo de la inercia crítica. Fuente: Ja-	
	mes k. Wing	68
3.8.	Distribución de zonas sísmicas. Fuente: RNE-E030	77
3.9.	Valores medios de cargas sostenida, extraordinaria y total, para ofici-	
	nas. Fuente: Propia	83
3.10.	Carga de diseño y probabilidades de excedencia en oficinas. Fuente:	
	Propia	84
3.11.	Cargas sostenida, extraordinaria y total, para aulas. Fuente: Propia $% \mathcal{A}$.	86
3.12.	Carga de diseño y probabilidades de excedencia en aulas. Fuente: Propia	86
3.13 .	Cargas sostenida, extraordinaria y total, para viviendas. Fuente: Propia	89
3.14.	Carga de diseño y prob. de excedencia en viviendas. Fuente: Propia	89
3.15.	Cargas sostenida, extraordinaria y total, para hoteles. Fuente: Propia	91
3.16.	Carga de diseño y prob. de excedencia en hoteles. Fuente: Propia	91

.

3.17	. Histograma de frecuencias y curva de porcentaje acumulado de la	
	resistencia a compresión del concreto, $f'c$. Fuente: Propia	98
3.18	. Histograma de frecuencias y curva de porcentaje acumulado del es-	
	fuerzo de fluencia del acero, f_y . Fuente: Propia	103
4.1.	Estructura empleada en el análisis a flexión. Fuente: Propia	107
4.2.	Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para	
	las combinaciones de diseño propuestos - flexión. Fuente: Propia	110
4.3.	Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, φ , para	
	las combinaciones de diseño propuestos - flexión. Fuente: Propia	111
4.4.	Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para	
	las combinaciones de diseño propuestos - Corte. Fuente: Propia	114
4.5.	Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, φ , para	
	las combinaciones de diseño propuestos - Corte. Fuente: Propia	115
4.6.	Estructura empleada en el análisis para deflexión. Fuente: Propia. $\ .$.	116
4.7.	Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para	
	las combinaciones de diseño propuestos - Deflexión. Fuente: Propia.	120
4.8.	Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, φ , para	
	las combinaciones de diseño propuestos - Deflexión. Fuente: Propia.	120
4.9.	Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para	
	las combinaciones de diseño propuestos - flexión. Fuente: Propia	123
4.10	. Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, ϕ , para	
	las combinaciones de diseño propuestos - flexión. Fuente: Propia	124
4.11	. Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para	
	las combinaciones de diseño propuestos - Corte. Fuente: Propia	126
4.12	. Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, ϕ , para	
	las combinaciones de diseño propuestos - Corte. Fuente: Propia	127

4.13. Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, ϕ , para
las combinaciones de diseño propuestos - Deflexión. Fuente: Propia. 129
4.14. Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, ϕ , para
las combinaciones de diseño propuestos - Deflexión. Fuente: Propia. 130
4.15. Estructura empleada en el análisis de distorsiones. Fuente: Propia 132
4.16. Variación de β_{FORM} y Pf_{FORM} según la zona sísmica, Z, para las com-
binaciones de diseño propuestos - Distorsión. Fuente: Propia 135
4.17. Variación de β_{SORM} y Pf_{SORM} según la zona sísmica, Z, para las com-
binaciones de diseño propuestos - Distorsión. Fuente: Propia 136
4.18. Estructura empleada en el análisis de distorsiones, modelo con 3 gra-
dos de libertad. Fuente: Propia
4.19. Variación de β_{FORM} y Pf_{FORM} según la zona sísmica, Z, para las com-
binaciones de diseño propuestos - Distorsión modelo 02. Fuente: Propia.141
4.20. Variación de β_{SORM} y Pf_{SORM} según la zona sísmica, Z, para las com-
binaciones de diseño propuestos - Distorsión modelo 02. Fuente: Propia.141
4.21. Variación de β_{FORM} y Pf_{FORM} según la zona sísmica, Z, para las com-
binaciones de diseño propuestos - Distorsión. Fuente: Propia 144
4.22. Variación de β_{SORM} y Pf_{SORM} según la zona sísmica, Z, para las com-
binaciones de diseño propuestos - Distorsión. Fuente: Propia 144
4.23. Variación de β_{FORM} y Pf_{FORM} según la zona sísmica, Z, para las com-
binaciones de diseño propuestos - Distorsión modelo 02. Fuente: Propia.146
4.24. Variación de β_{SORM} y Pf_{SORM} según la zona sísmica, Z, para las com-
binaciones de diseño propuestos - Distorsión modelo 02. Fuente: Propia.147
4.25. Variación de los coeficientes de sensitividad X(1) y X(2), método
FORM - flexión. Fuente: Propia
4.26. Variación de los coeficientes de sensitividad X(3) y X(4), método
FORM - flexión. Fuente: Propia

4.41. Variación de los coeficientes de sensitividad X(1) y X(2), método
FORM - Corte. Fuente: Propia
4.42. Variación de los coeficientes de sensitividad X(1) y X(2), método
SORM - Corte. Fuente: Propia.
4.43. Variación de los coeficientes de sensitividad $X(1)$ y $X(2)$, método
FORM - Deflexión. Fuente: Propia.
4.44. Variación de los coeficientes de sensitividad X(1) y X(2), método
SORM - Deflexión. Fuente: Propia.
4.45. Variación de los coeficientes de sensitividad X(1) y X(2), método
FORM - Distorsión. Fuente: Propia
4.46. Variación de los coeficientes de sensitividad X(3) y X(4), método
FORM - Distorsión. Fuente: Propia
4.47. Variación de los coeficientes de sensitividad X(1) y X(2), método
SORM - Distorsión. Fuente: Propia
4.48. Variación de los coeficientes de sensitividad X(3) y X(4), método
SORM - Distorsión. Fuente: Propia
4.49. Variación de los coeficientes de sensitividad X(1) y X(2), método
FORM - Distorsión. Fuente: Propia
4.50. Variación de los coeficientes de sensitividad X(1) y X(2), método
SORM - Distorsión. Fuente: Propia
4.51. Modelado de la vista aérea del Proyecto. Fuente: Consorcio Hospita-
lario Ayacucho
4.52. Distribución de bloques del Proyecto. Fuente: GRA-CERAETE-2013. 172
4.53. Modelo tridimensional de la estructura. Fuente: Etabs-2015 175
4.54. Ejes de la estructura de análisis. Fuente: Etabs-2015
A 1 Diagrama de fluio del programa FORM SORM Fuentes Propia 213
A 2 Diagrama de fluie del programa nero Cargo Viro Fuento: Provis 214
A.2. Diagrama de nujo del programa para Carga Viva. Fuente. Fropia 214

B.1.	Reporte de pruebas de compresión a 28 días $f'c = 210 \cdot kg/cm^2 \dots 216$
B.2.	Reporte de pruebas de compresión a 28 días $f'c = 210 \cdot kg/cm^2 \dots 217$
B.3.	Reporte de pruebas de compresión a 28 días $f'c = 210 \cdot kg/cm^2$ 218
B.4.	Reporte de pruebas de compresión a 28 días $f'c = 210 \cdot kg/cm^2 \dots 219$
F.1.	Cálculo del Indice de Confiabilidad para $\alpha_D = 1.4$, $\alpha_L = 1.7$ y $\varphi = 0.9$,
	con una cuantía requerida de 0,001353966. Fuente: Propia 231
F.2.	Cálculo del Indice de Confiabilidad para $\alpha_D = 1.4$, $\alpha_L = 1.7$ y $\varphi = 0.85$,
	con un valor de $d * b_w$ de 149.9144. Fuente: Propia
F.3.	Cálculo del Indice de Confiabilidad para $\alpha_D = 1.4$, $\alpha_L = 1.7$ y $\varphi = 0.90$,
	con un valor de $Ie(L+D)$ de 6495.66. Fuente: Propia
F.4.	Cálculo del Indice de Confiabilidad para $\alpha_D = 1.25$, $\alpha_L = 1.25$, $\alpha_S = 1$
	y $Z=0.45,$ con un valor de ZS/I de $0.00006912435.$ Fuente: Propia 234
G.1.	Resultados del área de acero requerida para las combinaciones de di-
	seño del RNE. Fuente: Etabs
G.2.	Resultados del área de acero requerida para las combinaciones de di-
	seño de la Propuesta. Fuente: Etabs
G.3.	Resultados del área de acero requerida para las combinaciones de di-
	seño del ACI. Fuente: Etabs
H.1.	Bloque A – Hall, Ingreso Principal proceso de construcción. Fuente:
	Propia
H.2.	Bloque E $-$ Unidad de emergencias proceso de construcción. Fuente:
	Propia
H.3.	Bloque E – Unidad de emergencias proceso de acabados. Fuente: Propia.238

Lista de Tablas

2.1.	Índices de confiabilidad utilizados en la calibración de códigos estruc-	
	turales. Fuente: The Joint Committee of Structural Safety	46
2.2.	Índices de confiabilidad para un período de referencia de un año de	
	acuerdo a modelo probabilístico. Fuente: The Joint Committee of	
	Structural Safety	47
2.3.	Índices de confiabilidad según estado límite y niveles de daño. Fuente:	
	The Joint Committee of Structural Safety	48
2.4.	Combinaciones de carga. Fuente: RNC-RNE-ACI	48
3.1.	Peraltes mínimos en losas y vigas sugeridos por el código del ACI para	
	el control de deflexiones. Fuente: ACI 318-14	64
3.2.	Deflexiones máximas por el código del ACI y la norma técnica E060.	
	Fuente: RNE	65
3.3.	Factores de zona. Fuente: RNE-E030	71
3.4.	Factores de suelo. Fuente: RNE-E030	71
3.5.	Periodos T_P Y T_L . Fuente: RNE-E030	72
3.6.	Categoría de las edificaciones y factor U. Fuente: RNE-E030	73
3.7.	Coeficiente básico de reducción Ro. Fuente: RNE-E030	73
3.8.	Factor de irregularidad I_a . Fuente: RNE-E030	73
3.9.	Factor de irregularidad I_P . Fuente: RNE-E030	74
3.10.	Límites para la distorsión del entrepiso. Fuente: RNE–E030	75

LISTA DE TABLAS

3.11	. Parámetros estadísticos de la distribución de probabilidad de la carga	
	muerta, CM, utilizados en la calibración. Fuente: Propia	80
3.12	. Comparativa de la carga viva máxima de diseño en edificios. Fuente:	
	RNE-E020, NTC-2004, ASCE 7-10, Eurocódigo	81
3.13	. Parámetros de entrada para la simulación de cargas en oficinas. Fuen-	
	te: Propia	82
3.14	. Resultados de la simulación de cargas para oficinas. Fuente: Propia	83
3.15.	. Carga total en oficinas con P.E. de 50%. Fuente: Propia	84
3.16.	Probabilidades de excedencia en oficinas. Fuente: Propia	85
3.17.	Datos de entrada en la simulación de cargas en aulas. Fuente: Propia	85
3.18.	Resultados de la simulación de cargas para aulas de clase. Fuente: Propia	86
3.19.	Carga total en aulas con P.E. de 50%. Fuente: Propia	87
3.20.	Probabilidades de excedencia en aulas de clase. Fuente: Propia	87
3.21.	Datos de entrada en la simulación de cargas en viviendas. Fuente: Propia	88
3.22.	Resultados de la simulación de cargas para viviendas. Fuente: Propia	88
3.23 <i>.</i>	Carga total en viviendas con P.E. de 50%. Fuente: Propia	89
3.24.	Probabilidades de excedencia en viviendas. Fuente: Propia	90
3.25.	Datos de entrada en la simulación de cargas en hoteles. Fuente: Propia	90
3.26.	Resultados de la simulación de cargas para hoteles. Fuente: Propia	91
3.27.	Carga total en hoteles con P.E. de 50%. Fuente: Propia	92
3.28.	Probabilidades de excedencia en hoteles. Fuente: Propia	92
3.29.	Parámetros estadísticos de la distribución de probabilidad de la carga	
	viva, CV, utilizados en la calibración. Fuente: Propia	93
3.30.	Prueba de bondad de ajuste a la muestra recopilada, $f'c$. Fuente: Propia	97
3.31.	Parámetros estadísticos de la distribución de probabilidad de la re-	
	sistencia a compresión del concreto, $f'c$, utilizados en la calibración.	
	Fuente: Propia	99
3.32.	Prueba de bondad de ajuste para, f_y . Fuente: Maria Coronel Uriona .	102

3.33	Parámetros estadísticos de la distribución de probabilidad del esfuerzo
	de fluencia del acero, $f_{\rm y},$ utilizados en la calibración. Fuente: Propia $~.~103$
3.34.	Resumen de los parámetros estadísticos que describen las funciones
	de probabilidad de las variables básicas involucradas en el trabajo de
	calibración. Fuente: Propia
3.35.	Parámetros estadísticos en términos de Q/Q_n de las variables básicas.
	Fuente: Propia
4.1.	Combinaciones de diseño a ser analizadas. Fuente: Propia 107
4.2.	Parámetros para el diseño en flexión. Fuente: Propia
4.3.	Cuantías de acero requeridas según requisitos de resistencia. Fuente:
	Propia
4.4.	Indice de confiabilidad y probabilidad de falla para flexión. Fuente:
	Propia
4.5.	Parámetros de diseño para fuerza cortante. Fuente: Propia 112
4.6.	Producto $d \ast b_w$ requeridas según requísitos de resistencia. Fuente: Pro-
	pia
4.7.	Indice de confiabilidad y probabilidad de falla por Corte. Fuente: Propia.114
4.8.	Parámetros de diseño para la inercia efectiva. Fuente: Propia 116
4.9.	Parámetros de diseño para la inercia efectiva. Fuente: Propia 117
4.10.	Indice de confiabilidad y probabilidad de falla para Deflexiones. Fuen-
	te: Propia
4.11.	Parámetros para el diseño en flexión. Fuente: Propia
4.12.	Cuantías de acero requeridas según requisitos de resistencia. Fuente:
	Propia
4.13.	Indice de confiabilidad y probabilidad de falla para flexión. Fuente:
	Propia
4.14.	Parámetros de diseño para fuerza cortante. Fuente: Propia

pia
4.16. Indice de confiabilidad y probabilidad de falla por Corte. Fuente: Propia.126
4.17. Parámetros de diseño para la inercia efectiva. Fuente: Propia 128
4.18. Parámetros de diseño para la inercia efectiva. Fuente: Propia 129
4.19. Indice de confiabilidad y probabilidad de falla para Deflexiones. Fuen-
te: Propia
4.20. Parámetros para el diseño de distorsión. Fuente: Propia
4.21. Valores de $ZS/(I_1+I_2)$ requeridas según requisitos de distorsión. Fuen-
te: Propia
4.22. Indice de confiabilidad y probabilidad de falla para Distorsiones. Fuen-
te: Propia
4.23. Indice de confiabilidad y probabilidad de falla para Distorsiones mo-
delo 02. Fuente: Propia
4.24. Parámetros para el diseño de distorsión. Fuente: Propia
4.25. Valores de $ZS/(I_1+I_2)$ requeridas según requisitos de distorsión. Fuen-
te: Propia
4.26. Indice de confiabilidad y probabilidad de falla para Distorsiones. Fuen-
te: Propia
4.27. Indice de confiabilidad y probabilidad de falla para Distorsiones mo-
delo 02. Fuente: Propia
4.28. Coeficientes de sensitividad para el método FORM. Fuente: Propia. 149
4.29. Coeficientes de sensitividad para el método SORM. Fuente: Propia. 150
4.30. Coeficientes de sensitividad para el método FORM. Fuente: Propia. 152
4.31. Coeficientes de sensitividad para el método SORM. Fuente: Propia. 152
4.32. Coeficientes de sensitividad para el método FORM. Fuente: Propia. 155
4.33. Coeficientes de sensitividad para el método SORM. Fuente: Propia. 156
4.34. Coeficientes de sensitividad para el método FORM. Fuente: Propia. 158

4.15. Producto $d * b_w$ requeridas según requisitos de resistencia. Fuente: Pro-

4.35.	Coeficientes de sensitividad para el método SORM. Fuente: Propia. 159
4.36.	Coeficientes de sensitividad para el método FORM. Fuente: Propia 161
4.37.	Coeficientes de sensitividad para el método SORM. Fuente: Propia. 162
4.38.	Coeficientes de sensitividad para el método FORM. Fuente: Propia. 164
4.39.	Coeficientes de sensitividad para el método SORM. Fuente: Propia. 164
4.40.	Coeficientes de sensitividad para el método FORM. Fuente: Propia 166
4.41.	Coeficientes de sensitividad para el método SORM. Fuente: Propia. 166
4.42.	Coeficientes de sensitividad para el método FORM. Fuente: Propia 169
4.43.	Coeficientes de sensitividad para el método SORM. Fuente: Propia. 169
4.44.	Combinaciones de carga. Fuente: Propia
4.45.	Factores de reducción de resistencia. Fuente: Propia
4.46.	Parámetros de diseño según la E030. Fuente: Propia
4.47.	Espectro de diseño según la E030. Fuente: Propia
4.48.	Áreas de acero requeridas (cm2), según tipo de elemento y combina-
	ción de diseño. Fuente: Propia
5.1.	ción de diseño. Fuente: Propia
5.1. 5.2.	ción de diseño. Fuente: Propia
5.1. 5.2. C.1.	ción de diseño. Fuente: Propia
5.1. 5.2. C.1. C.2.	ción de diseño. Fuente: Propia
5.1. 5.2. C.1. C.2.	ción de diseño. Fuente: Propia
5.1.5.2.C.1.C.2.D.1.	ción de diseño. Fuente: Propia
 5.1. 5.2. C.1. C.2. D.1. D.2. 	ción de diseño. Fuente: Propia
 5.1. 5.2. C.1. C.2. D.1. D.2. E.1. 	ción de diseño. Fuente: Propia
 5.1. 5.2. C.1. C.2. D.1. D.2. E.1. 	ción de diseño. Fuente: Propia
 5.1. 5.2. C.1. C.2. D.1. D.2. E.1. E.2. 	ción de diseño. Fuente: Propia

LISTA DE TABLAS

E.3.	Parámetros del Análisis de Confiabilidad en Deflexión - Comb. 01.	
	Fuente: Propia	228
E.4.	Parámetros del Análisis de Confiabilidad en Distorsión - Comb. 03.	
	Fuente: Propia	229

Lista de Siglas y Símbolos

Amplificación de carga de la Norma
Parámetros de resistencia
Indice de confiabilidad
Densidad de probabilidad normal
Media
Desviación estándar
Amplificación de carga del trabajo
Relación de cargas de diseño
Resistencia a la compresión del concreto
Cuantía
Esfuerzo a la fluencia del acero
Deflexión en el centro de luz
Momento flector crítico
Momento de inercia crítico
Área de acero de refuerzo
Media aritmética
Varianza
kilogramo
Metro

Capítulo 1

INTRODUCCIÓN.

1.1. Antecedentes

El diseño estructural a pasado por diversas etapas de actualización, se puede mencionar como un origen de partida al diseño basado en esfuerzos admisibles ASD (Allowable Strength Design). El ASD utiliza un factor de seguridad, mediante el cual se pueda evitar que los esfuerzos actuantes superen un esfuerzo de falla ubicado por debajo del límite elástico del material. Un inconveniente que presenta este método es que no se puede obtener un valor real de la resistencia y margen de seguridad, cuando los esfuerzos en los materiales sobrepasan dicho límite. Para poder subsanar los vacíos en la filosofía de diseño del ASD, se desarrolló la teoría de confiabilidad, que suple los vacíos del ASD, incorporando el uso de coeficientes de amplificación de demandas y reducción de capacidades, además de la teoría de probabilidades para calcular en forma racional, la probabilidad de falla de los elementos analizados.

Hoy en día el diseño basado en factores de carga y resistencia LRFD (Load and Resistance factor design), desarrollado por medio de la teoría de confiabilidad es usado por la mayoría de los ingenieros estructurales y códigos de diseño. Este tema estructural ha sido uno de los primeros campos de la Ingeniería Civil en ser investigados, y su aplicación en la calibración de códigos de diseño estructural, es uno de las más útiles. La calibración obtiene factores de amplificación de carga y reducción de resistencia que se requieren para obtener una probabilidad de falla deseada o un índice aceptable de confiabilidad. Se puede obtener, de este modo dichos coeficientes para las solicitaciones a los que se encuentra sometida una estructura.

Actualmente la Norma Técnica E060 se basa en los principios del LRFD de las normas americanas, pero aumentó los factores de amplificación de carga mientras que mantuvo los mismos factores de reducción de resistencia del ACI 318-14¹. En consecuencia, el índice de confiabilidad de la Norma E060 resultará más conservador que el del ACI[1], haciendo necesario entonces reajustar la norma utilizando la teoría ya mencionada.

En el contexto nacional tenemos una investigación previa a este tema realizada en la tesis de la Ing. María Carmen Coronel Uriona[2] en el año 2003, en la cual se hace una revisión de la combinación de diseño del RNC, y se propone un modificación a la combinación de diseño por gravedad de cargas muertas y vivas, $(1.4 \cdot CM + 1.7 \cdot CV)$, dejando de lado las combinaciones que involucran cargas sísmicas.

1.2. Justificación e Importancia.

Se planteó el desarrollo de este trabajo tomando como tema de investigación la aplicación de la Teoría de Confiabilidad en la calibración de los códigos de diseño, estos códigos son muy importantes por que facilitan a los diseñadores asegurar el grado de confiabilidad en el cálculo de las estructuras diseñadas. El desarrollo de esta investigación se justifica por el hecho de que su temática es muy importante,

¹2014 Building Code Requirements for Structural Concrete of the American Concrete Institute

dado que el diseño basado en confiabilidad hace referencia al análisis de un estado límite, el cual no debe ser alcanzado. Este estado límite es un evento predefinido, tiene una probabilidad de ocurrencia, y es el tema en estudio. Este método permite un tratamiento racional de la incertidumbre en el diseño y facilita el entendimiento de los principios fundamentales que lo rigen.

Además, esta investigación se justifica desde perspectivas, sociales y técnicas debido a que, las dimensiones de los elementos estructurales influyen directamente en el costo de la edificación y no por ello aseguran un grado de confiabilidad deseado, por esta razón en la medida que han sido determinadas las debilidades y bondades de los valores de los coeficientes de amplificación de carga objeto del estudio, será factible realizar los ajustes necesarios inherentes al tema, con los cuales podremos visualizar si nuestras estructuras que fueron diseñadas con los procedimientos de la Norma Técnica E060 se encuentran Sub o Sobre dimensionadas y cual es el grado de confiabilidad que presentan y si cumplen los requerimientos mínimos establecidos por las normas internacionales, con lo que se estaría dando un aporte significativo para el entendimiento conceptual de lo que aquí se aborda. Los mayores beneficios, que esta investigación pueda reportar son de interés para los ingenieros civiles. Asimismo, existe la posibilidad de desarrollar un nuevo valor en los coeficientes estudiados que podrían ser introducidos en la norma E060, lo cual le confiere un potencial práctico.

1.3. Planteamiento del Problema.

Surge la necesidad de analizar la Norma Técnica E060 y estudiar si los valores de los coeficientes de amplificación de carga están enmarcados en las recomendaciones de normas y estudios internacionales, verificando la magnitud de estos coeficientes para determinar si con estos valores estamos Sub o Sobre dimensionando nuestras estructuras diseñadas. Puesto que al ingeniero estructural le resulta difícil e incómodo trabajar con variables aleatorias para poder determinar a la hora de realizar el diseño la probabilidad de falla de un elemento estructural.

1.3.1. Definición del Problema y su Posible Solución.

Podemos definir que el problema principal se centra en la determinación de cual es el nivel de seguridad asociado al diseño estructural de la Norma Técnica E060, evaluando los coeficientes de amplificación de carga, con los lineamientos planteados por normas internacionales.

En consecuencia, surgió la necesidad de realizar un estudio en el cual se muestra la teoría probabilista orientada a un análisis de confiabilidad y el proceso de toma de decisiones que existe detrás de las normas de diseño estructural en los diferentes países, de tal manera de poder proponer un cambio a los valores de los coeficientes de amplificación de carga de la actual Norma Técnica E060.

1.4. Formulación de los Objetivos

Establecer una crítica de la Norma E060 y una propuesta de cambio frente a la incertidumbre existente en el nivel de confiabilidad y las nuevas tendencias de diseño basadas en estados límites y seguridad de los sistemas estructurales, que el código peruano maneja para el diseño estructural, con el fin de proponer cambios que serían necesarios realizar para adecuarse a los criterios generalizados.

1.4.1. Objetivos específicos

Para alcanzar el objetivo general enunciado en el numeral anterior, se deberán lograr los siguientes propósitos específicos.

Precisar los aspectos técnicos de la teoría de la confiabilidad y los análisis por

estados límites en el diseño estructural, que son consideradas en las investigaciones actuales de la materia.

- Comparar los aspectos técnicos de la norma E060 con la teoría de la confiabilidad en el diseño estructural.
- Identificar debilidades en la norma E060 con un análisis de confiabilidad para proponer mejoras.

1.5. Planteamiento de las Hipótesis

Al realizar un análisis de confiabilidad de los coeficientes de amplificación de carga, se podrá tener una concepción de los valores utilizados en la norma técnica E060, para poder resaltar las ventajas y desventajas de estos valores, proponiendo en lo futuro modificaciones y aportes. Entonces, se puede afirmar que al establecer un análisis de confiabilidad en los coeficientes de amplificación de carga, se permitirá modificar el código de diseño de la norma E060 usado y proporcionar una herramienta útil para asegurar un nivel de confiabilidad deseado.

1.6. Variables e Indicadores

En el desarrollo de la investigación es necesario delimitar y definir las variables presentes en este trabajo, la variable del estudio se ha denominado Nivel de confiabilidad de los coeficientes de amplificación de cargas en el diseño estructural $(c_1CV + c_2CM + c_3CS)^2$, que se definiría a partir de los elementos que surjan del análisis de las bases conceptuales.

 $^{{}^{2}}c_{1}$: Coeficiente de amplificación de carga viva, c_{2} : Coeficiente de amplificación de carga muerta, c_{3} : Coeficiente de amplificación de carga de sismo, CV: Magnitud de la carga viva, CM: Magnitud de la carga muerta, CS: Magnitud de la carga de sismo

1.6.1. Variables Independientes.

Una variable se considera independiente; cuando en esta investigación, desempeña el rol de causa mayoritaria.

- d: Variables de Diseño. Están asociadas a parámetros que definen la geometría de la estructura (dimensiones). Pueden tener valores deterministas o aleatorios, en este caso se tratan de valores determinísticos.
- φ: Parámetros. Parámetros fijos en el diseño global controlados por el diseñador, es decir, los valores esperados o característicos, pero pueden tener carácter aleatorio que influiría en el análisis de confiabilidad.
- k: Parámetros Estadísticos. Constituyen el conjunto de parámetros que definen la variabilidad y dependencia de las variables aleatorias de los vectores d, h y f.

1.6.2. Variables Dependientes.

Una variable se considera dependiente; cuando en esta investigación, desempeña el rol de efecto o consecuencia.

- β: Indice de Confiabilidad. Son los valores que se obtendrán del análisis de variables básicas para los estados límites de diseño de los elementos estructurales.
- ψ: Sensitividad de las Variables Básicas. Miden la variabilidad de las variables básicas involucradas en el diseño, y nos muestran la probabilidad de falla de la estructura.
- α_i: Coeficientes de Amplificación de Carga. Son el resultado de los análisis de confiabilidad realizados a las variables básicas para los estados límites

analizados, estos valores se elegirán para los mejores resultados que se muestren.

1.6.3. Metodología Detallada.

El proceso metodológico en el presente trabajo parte del descubrimiento del problema a investigar, pasando por la documentación y el estado del arte, la modelación e idealización del problema, el diseño de estrategias para verificar la presunción del problema, la contrastación con la realidad y establecer las conclusiones y resultados.

Por tanto, los resultados que se extraigan del proceso de análisis de confiabilidad deben ser valiosos para estudiar las características de las estructuras para el caso analizado. De esta forma, se deben obtener los resultados necesarios para el estudio pero, además, con un grado de precisión ajustado a los objetivos de la investigación.

1.7. Tipo y Nivel de Investigación.

1.7.1. Tipo de Investigación.

Esta investigación es **aplicada**, porqué el objeto del estudio se da en el tiempo y un lugar determinado: reajuste de los coeficientes de amplificación de carga de la Norma E060. El estudio es de tipo aplicada donde la realidad estudiada es el grado de confiabilidad en las estructuras que brinda el uso de los coeficientes de amplificación de carga de la norma E060.

1.7.2. Nivel de Investigación.

Esta investigación es correlacional, que tiene como finalidad correlacionar la incertidumbre de la variabilidad de las cargas con el grado de confiabilidad estructural de las edificaciones, considerando la seguridad de las estructuras. Atendiendo a la
naturaleza de los hechos y al nivel de la investigación se tiene que es factible porque registra datos y los evalúa.

1.7.3. Diseño de la Investigación.

El diseño de la investigación que se desarrolla en este trabajo es del tipo correlacional, en la medida de que se trata de establecer procedimientos de análisis de confiabilidad relacionando las variables básicas y con ello poder obtener el indice de confiabilidad estructural de los modelos que estamos estudiando.

1.8. Técnicas de Recolección y Procesamiento de Datos.

Los datos utilizados en este trabajo tales como la resistencia del concreto y fluencia del acero fueron recolectados de forma aleatoria de diferentes laboratorios que realizan estas pruebas, para ser procesados de forma estadística, y obtener sus valores característicos por medio de la metodología del chi-cuadrado. Estos resultados son usados en los procedimientos de análisis de confiabilidad, con la finalidad de obtener los resultados que estamos buscando.

1.9. Alcances y Limitaciones.

- En el estudio solo se consideró los valores de la resistencia del concreto(f'c), la fluencia del acero(fy), la carga viva(CV) y muerta (CM), en el análisis de las variables básicas.
- El calculo de los indices de confiabilidad se limitan al estudio y recomendaciones dadas para las de las cargas verticales de servicio y de sismo de los elementos analizados.

- Los valores propuestos de los coeficientes de amplificación de carga en este trabajo, serán aplicadas a estructuras de concreto armado, según las indicaciones de la Norma E060.
- Los alcances que pudiera salir de este estudio están basadas en una posible alternativa de modificación de la Norma E060, en el capitulo 9.2. Resistencia Requerida[3].

1.10. Organización del Estudio.

Una vez planteada el problema de investigación, estructuramos el presente trabajo en 8 capítulos, seguida por los apéndices y la bibliografía utilizada para su desarrollo.

- Capítulo 1: Se expone el problema y los objetivos de investigación. Como ha sido abordado, desde años pasados, y como viene siendo tratado actualmente.
- Capítulo 2: Se presenta los conceptos fundamentales de la teoría de confiabilidad, cargas de diseño, calibración de códigos de diseño y el diseño por estados límites, también se menciona los métodos de cálculo que se utilizan en cada caso.
- Capítulo 3: Se presenta los estados límites analizados de flexión, fuerza cortante, deflexiones y distorsiones, indicando el modelo matemático utilizado en cada caso. Tambien se presenta la descripción estadística de las variables básicas involucradas como son la carga muerta, carga viva, resistencia a compresión del concreto y el esfuerzo de fluencia del acero, de las cuales se obtiene el valor medio y su desviación estándar que serán utilizados en el análisis de confiabilidad.
- Capítulo 4: Se presenta el cálculo del indice de confiabilidad de los estados límites definidos en el Capítulo 03 en 04 combinaciones de diseño, y se presenta

un propuesta de modificatoria a las combinaciones de diseño analizadas. Tambien se presenta el cálculo de los coeficientes de sensitividad de las variables básicas en cada uno de los estados límites analizados para las 04 combinaciones de diseño definidas en el Capítulo 4. Y se presenta un caso de estudio referente al cálculo de las áreas de acero requeridas para las combinaciones de diseño propuestas por el RNE, ACI y la recomendada en esta investigación. La estructura analizada corresponde al Bloque E de la unidad de emergencias del Proyecto "Mejoramiento de la Capacidad Resolutiva del Hospital Regional Miguel Ángel Mariscal Llerena de Ayacucho"

• Capítulo 5: Conclusiones y recomendaciones.

Capítulo 2

Marco Teórico.

2.1. Consideraciones Generales.

Puede parecer que estos reglamentos son una modalidad reciente, y conviene mencionar el más antiguo código de construcción que se conoce, el cual está inscrito en una estela y se atribuye a Hammurabi. Este código, como otros posteriores, no da indicaciones de cómo lograr la seguridad de la casa, sólo se refiere a que ésta debe quedar íntegra, así como sus paredes, y pone mucho énfasis en las sanciones que se aplicarán por no cumplir esos requisitos[4].

Podemos mencionar como punto de partida el diseño realizado por medio de la filosofía de diseño ASD, desarrollado en los años 60s, el cual presentaba deficiencias y vacíos en la predicción de la probabilidad de falla de los elementos. En los 70s a raíz de los desastres naturales que se suscitaron como el terremoto de San Fernando-California en 1971, Japón 1978, surge la necesidad de cambiar la forma de diseño y se empieza a mencionar una metodología basada en *Estados Limites de Diseño*, que involucraban modelos probabilistas en sus principios matemáticos, con lo cual surgieron versiones de diseño como el LFD (Load Fac-

tor Desing) que era una version temprana del LRFD[2] mencionado en la AASHTO¹.

La Norma Técnica E060-RNE[3], considera la filosofía de diseño del LRFD, que es mencionada en el ACI[1], pero realiza modificaciones con respecto a los valores de los coeficientes de amplificación de carga, sin mencionar alguna referencia que justifique estos valores.

2.1.1. Principio del Diseño Estructural Basado en Confiabilidad.

los principios de diseño basados en confiabilidad, hacen referencia a la filosofía de diseño del LRFD, en el cual el principio básico es que la resistencia requerida no supere a la resistencia de diseño, por lo que la seguridad estructural requiere que:

Resistencia requerida < Resistencia de diseño

Donde la resistencia requerida se determina del análisis estructural utilizando los valores de las cargas especificadas y la resistencia de diseño se calcula de los principios de mecánica estructural utilizando las resistencias de los materiales especificados y las dimensiones del elemento estructural. La ecuación anterior puede escribirse también como:

$$\sum \gamma_i \cdot Q_i \le \varphi \cdot R_n \tag{2.1.1}$$

En esta ecuación R_n es la resistencia nominal correspondiente al estado límite de interés y Q_i es la carga nominal actuante. Los valores nominales de las resistencias y cargas, normalmente están incluidas en los códigos de diseño, y la mayoría de los ingenieros están familiarizados con sus valores. Los factores ϕ y γ son los coeficientes de reducción de resistencia y de amplificación de cargas respectivamente. Estos

¹American Association of State Highway and Transportation Officials

coeficientes reflejan la incertidumbre existente en los niveles de carga y resistencia y la probabilidad de falla del sistema, revelada en el índice de confiabilidad, β . Estos coeficientes deben ser determinados adecuadamente, de tal modo que la probabilidad de falla sea acorde con la importancia de la estructura[2].

2.2. Teoría De La Confiabilidad.

2.2.1. Antecedentes.

Durante muchos años se ha considerado en el diseño de sistemas estructurales que las cargas aplicadas y la resistencia de los materiales son deterministas. La resistencia de un elemento se determinaba de forma tal que excediera la carga con un cierto margen. La relación entre la resistencia y la carga se tomaba como coeficiente de seguridad, que determinaban tradicionalmente basándose en la experiencia y el criterio del ingeniero.

Posteriormente, aparecieron códigos semiprobabilísticos en los que se usan coeficientes parciales de seguridad. Se especifican los valores característicos de las cargas y las resistencias inciertas y se dan los coeficientes parciales de seguridad que son aplicados a tipos específicos de cargas (coeficientes de mayoración) y resistencias (coeficientes de reducción) para asegurar que la estructura sea suficientemente segura. Los coeficientes parciales de seguridad se basan generalmente en la experiencia o se obtienen mediante un proceso de calibración de código para lo cual se tienen en cuenta los códigos anteriores y mediciones de confiabilidad obtenidas mediante técnicas probabilistas. Estos códigos semiprobabilistas son los que actualmente utilizan los ingenieros para el diseño práctico de la mayoría de las estructuras.

Como ya se ha descrito, el análisis y diseño estructural se han basado tradicional-

mente en métodos deterministas y semiprobabilistas. Sin embargo, la existencia de incertidumbres en las cargas, en las resistencias y en el modelo del sistema obliga a usar métodos basados en técnicas probabilistas en un buen número de situaciones. Estos métodos son los que estudia la teoría de confiabilidad estructural. Toda estructura ingenieril debe cumplir una serie de requisitos de forma que desarrolle una prestación satisfactoria a lo largo de su vida útil. Estos requisitos son que la estructura no colapse o llegue a ser insegura, que no se alcancen deformaciones excesivas que puedan dar sensación de inseguridad y que además cumpla ciertos requisitos funcionales. Cada una de estas condicionantes se denomina estado límite, y la superación de un estado límite supone una situación indeseable para la estructura[5].

2.2.2. Estados Límites y Variables Básicas.

Se entiende por estado límite de una estructura la situación para la que, en caso de ser superada, puede considerarse que la estructura no cumple con alguna de las funciones para las que fue diseñada. Los estados límite o modos de fallo típicos que se consideran en el análisis de la confiabilidad de un sistema estructural son plastificación, fluencia, estabilidad (local y global), fatiga y deformaciones excesivas. Los estados límite se pueden clasificar en:

- Estados límite últimos. Corresponden a la máxima carga soportada por la estructura que puede estar relacionada con, por ejemplo, la formación de un mecanismo en la estructura, plasticidad excesiva, fractura por fatiga e inestabilidad(pandeo).
- Estados límite condicionales. Corresponden a la capacidad de soportar carga cuando una parte de la estructura ha fallado. Un fallo local puede estar causado por una acción accidental. Los estados límite condicionales están relacionados con la formación de un mecanismo en la estructura, la exceder la resistencia del material o con inestabilidad(pandeo).

• Estados límite de servicio. Los estados límite de servicio se relacionan con el uso normal de la estructura, por ejemplo, deformaciones y vibraciones excesivas.

Generalmente los sistemas estructurales tienen probabilidades pequeñas de que no funcionen como estaba previsto. El porcentaje de estructuras que colapsan o requieren reparaciones importantes es muy pequeño. Un paso importante en el análisis de la confiabilidad estructural es el decidir que cantidades deben modelarse mediante variables aleatorias y cuales deben modelarse mediante parámetros deterministas. Las cantidades aleatorias fundamentales que caracterizan el comportamiento de una estructura se llaman variables básicas y se denotan como $X = (X_1, ..., X_n)$, donde *n* es el número de variables estocásticas básicas.

Las variables aleatorias pueden modelar incertidumbres de origen físico, estadísticas y de modelo. Las variables aleatorias físicas pueden ser variables de carga (carga de tráfico o carga de viento), variables de resistencia (tensión de límite elástico) o variables geométricas (longitud o sección transversal de una viga). Las variables básicas pueden ser dependientes o independientes. Es conveniente elegir las variables básicas de forma que sean independientes. Sin embargo esto puede que no sea siempre posible. La dependencia entre variables básicas generalmente añade complejidad al análisis de confiabilidad. Esta dependencia se debe expresar de alguna forma. Generalmente se utiliza la matriz de correlación, aunque ésta da una información limitada[5].

2.2.3. Tipos De Incertidumbres.

Existen varias tipos de incertidumbre en el estudio de la seguridad estructural. La incertidumbre está modelada, generalmente, por variables aleatorias. Se tienen los siguientes tipos:

1. Incertidumbre física: llamada también incertidumbre inherente, es la debida a la aleatoriedad natural de una cantidad, por ejemplo la incertidumbre en el límite elástico debido a la variabilidad en la producción.

- 2. Incertidumbre estadística: debida al tamaño limitado de datos observados. Al usar dicho modelo en el cálculo de la confiabilidad estructural, podría suceder que el punto de falla más probable se ubique en las colas de la distribución, donde hay muy poca información y donde la probabilidad de falla es muy sensitiva (ver Figura 2.1).
- 3. Incertidumbre del modelo: es la incertidumbre relativa al conocimiento imperfecto del problema o a idealizaciones de los modelos matemáticos usados. Se le llama también incertidumbre epistémica. Incluye la incertidumbre relativa a la elección de los tipos de distribución de probabilidad para las variables estocásticas.
- 4. Incertidumbre de medición: es la incertidumbre causada por medición imperfecta de, por ejemplo, una cantidad geométrica.

Figura 2.1: Fuentes de incertidumbre estadística. Fuente: María Carmen Coronel

2.2.4. Funciones De Estados Límite y Variables Básicas.

Una variable básica es toda aquella cantidad involucrada y reconocida como fundamental en el cálculo de un estado límite. Un paso importante en el análisis de la confiabilidad es decidir cuáles cantidades deben ser modeladas como variables aleatorias, y cuáles deben ser modeladas como parámetros determinísticos.

Un estado límite es un evento predefinido, cuya ocurrencia debe evitarse para asegurar el adecuado comportamiento de la estructura. Es posible representar dicho evento, a través de un modelo matemático y calcular su probabilidad de ocurrencia. Para un elemento estructural para el cual la capacidad C es modelada como una variable aleatoria, y sujeta a una demanda D también aleatoria, la función que representa dicho estado límite será simplemente:

$$G(X) = C - D \tag{2.2.1}$$

Donde C y D son funciones de las variables aleatorias denotadas como $X = (X_1, ..., X_n)$. Estas η variables aleatorias en X son conocidas como variables básicas, y pueden representar las incertidumbres físicas, las estadísticas y las de modelo. La capacidad y la demanda, por ende, son cada una función de las variables básicas aleatorias.

La función del estado límite o función falla está definida de tal modo que los valores positivos de G(X) corresponden a situaciones seguras, y los negativos a situaciones de falla. Es importante notar que la superficie de falla no define una función de falla única, ya que dicha superficie puede ser descrita por varias funciones de falla equivalentes. Por lo tanto, cuando es posible, es conveniente utilizar funciones de falla diferenciables para facilitar el trabajo de los procedimientos implementados con el fin de calcular la confiabilidad.

2.2.5. Probabilidad De Falla.

El criterio de confiabilidad estructural se expresa normalmente en términos de ecuaciones de estados límite, G(X), también llamados eventos de falla, F:

2.2. Teoría De La Confiabilidad.

$$F = \{G(X) < 0\} \tag{2.2.2}$$

La probabilidad de que sucedan eventos F viene dada por la probabilidad de que la demanda D supere a la capacidad C de la estructura:

$$P_F = P(C - D < 0) = P(C < D)$$
(2.2.3)

La demanda impuesta de las cargas, D, en una estructura, y la capacidad, C, de la misma para un evento determinado, se podrían representar por dos curvas de distribución de probabilidad como se muestra esquemáticamente en la Figura 2.2.

Figura 2.2: Integración de la probabilidad de falla en dos dimensiones. Fuente: María Carmen Coronel Uriona

Asumiendo que la capacidad, C y la demanda, D son independientes, (lo cual es aproximadamente cierto para el caso en el que las cargas son estáticas), existirá siempre la posibilidad, aunque sea muy pequeña, de que C < D y la estructura falle. Por el contrario, si C > D, la estructura es segura.

El cálculo de la probabilidad de falla se evalúa resolviendo la siguiente integral:

$$P_{F} = P(falla) = P(C < D) = \int_{-\infty}^{+\infty} P(C < x) \cdot P(x < D < x + dx) dx = \int_{-\infty}^{+\infty} f(D) \cdot g(C) dx$$
(2.2.4)

18

2.3. Métodos De Cálculo Para Confiabilidad.

La integral anterior calcula la probabilidad de que sucedan aquellos valores x en los que la capacidad C es menor a la demanda D, de tal modo que la falla sucede. En la figura 2.2, el valor de dicha probabilidad corresponde al área sombreada en celeste.

Esta integral, ilustrada en la Figura 2.3 como una integral de volumen en la región de falla, es sin embargo, difícil de resolver y las aproximaciones numéricas resultan adecuadas y eficientes. Varios métodos para la solución de dicha integral han sido propuestos incluyendo técnicas de integración numérica, simulación MonteCarlo, y procedimientos de cálculo de confiabilidad de primer y segundo orden. Las técnicas de integración numéricas se vuelven ineficientes al incrementarse las dimensiones del vector X y son por lo general ineficientes.

Figura 2.3: Integración de la probabilidad de falla en tres dimensiones. Fuente: Luis Celorrio Barragué

2.3. Métodos De Cálculo Para Confiabilidad.

Como se ha visto en el ítem anterior, la probabilidad de falla puede ser obtenida al calcular la probabilidad de que G < 0. Sin embargo, el hecho de que muchas variables aleatorias estén involucradas, hace que este cálculo requiera de la implementación de la función de densidad de probabilidad de la función G y una integración múltiple

sobre la región de falla en la que G < 0. Este procedimiento exacto rara vez puede ser aplicado dado que la función de densidad de probabilidad de G es desconocida y además es difícil de obtener. Existen métodos numéricos que facilitan el calculo de la confiabilidad las cuales se mencionan a continuación.

2.3.1. Simulación de Monte Carlo.

La Simulación de Monte Carlo son aquellos métodos basados en muestras aleatorias obtenidas a partir de generadores de números aleatorios. Estas técnicas de simulación se han convertido en herramientas poderosas con las que los ingenieros evalúan el riesgo o la fiabilidad de complicados sistemas de ingeniería. Estas técnicas de simulación tienen su origen en los trabajos de investigación de Von Neumann y Ulam en 1949 durante la segunda guerra mundial en el Laboratorio Nacional de Los Álamos en Nuevo México[6]. La aplicación de las técnicas de simulación de Monte Carlo a problemas de confiabilidad estructural es relativamente reciente, y solo ha tenido aplicación práctica con la aparición de los ordenadores.

Generalmente, los métodos de simulación de Monte Carlo son los más costosos desde el punto de vista computacional; sin embargo, son los más seguros para la evaluación de la confiabilidad o la probabilidad de fallo de un sistema, siempre que se disponga de un generador de números aleatorios de calidad. En resumen, el método básico de simulación de Monte Carlo consta de los siguientes pasos:

- 1. Definir el problema en función de todas las variables aleatorias.
- 2. Cuantificar las características probabilísticas de todas las variables aleatorias mediante sus funciones de distribución y sus parámetros correspondientes.
- 3. Generar valores de las variables aleatorias a partir de números aleatorios distribuidos uniforme e independientemente, de acuerdo a su función de densidad

conjunta, o al menos de acuerdo a sus distribuciones marginales y sus correlaciones.

- 4. Evaluar el problema de forma determinista para cada conjunto de realizaciones de todas las variables aleatorias. Calcular el valor de la función de estado límite determinando si existe fallo o no. En este trabajo se considera que existe fallo cuando la función de estado límite correspondiente a un modo de fallo de la estructura que se esté analizando toma un valor g(x) < 0.
- 5. Extraer la información probabilística repitiendo los pasos 3 y 4 para un número suficiente de muestras o realizaciones de las variables aleatorias. La probabilidad de fallo se determina como el cociente entre el número de casos de fallo, N_f respecto al número total de tests realizados, N.
- 6. Determinar la exactitud y eficiencia de la simulación.

El corazón de la simulación de Monte Carlo es el generador de números aleatorios. En general, todos los ordenadores modernos y los programas de cálculo científico tales como MAPLE, MATHCAD y MATLAB tienen la capacidad de generar números aleatorios distribuidos uniformemente entre 0 y 1. Hay que tener un cuidado especial cuando se usan funciones existentes como *rand()* o *random()* para generar estos números distribuidos uniformemente, puesto que son más eficientes en unos lenguajes que en otros[5].

Figura 2.4: Ilustración de la Simulación de Monte Carlo. Fuente: Luis Celorrio Barragué

2.3.2. Método De Primer Orden (FORM).

Los primeros avances en el desarrollo de los métodos de primer orden, también conocidos como métodos o procedimientos FORM², tienen lugar casi 30 años atrás. Desde entonces estos métodos han sido refinados y extendidos de manera significativa y hoy en día son los más importantes en la evaluación de la confiabilidad estructural. Muchos programas de cálculo de la confiabilidad han sido desarrollados para realizar un análisis FORM y son ampliamente usados en los problemas de la ingeniería práctica y para propósitos de calibración de códigos. A continuación se muestra la teoría básica que conduce a la simplificación del cálculo de la probabilidad de falla a través del cálculo del índice de confiabilidad.

Se conoce que la función del estado límite G(X) es una función de las variables básicas aleatorias definida como sigue[7]:

$$G(X) = G(X_1, X_2, ..., X_n)$$
(2.3.1)

Es conveniente definir un nuevo set de variables x_i , normalizadas, al transformar la variable X_i original de acuerdo a:

$$x_i = \frac{X_i - \bar{X}_i}{\sigma_{xi}}; i = 1, ..., n$$
(2.3.2)

donde \bar{X}_i es la media de X_i y σ_{xi} es la desviación estándar. El índice de confiabilidad β es la distancia mínima entre el origen y la superficie del estado límite G(X) = 0 como se ilustra en la Figura2.4. para el caso de dos variables X_1 y X_2 . Esta interpretación geométrica de β permite el desarrollo de algoritmos iterativos para calcular su valor.

Para ilustrar el cálculo de β consideraremos el caso fundamental en que la función

²First Order Reliability Methods

de falla es lineal de las variables básicas aleatorias X_1 y X_2 , es decir, la capacidad y la demanda son cada una funciones de una sola variable:

$$G(X) = X_1 - X_2 \tag{2.3.3}$$

 X_1 y X_2 son llamadas variables aleatorias básicas del problema. Supongamos que ambas tienen sus correspondientes estadísticas como sigue:

 \bar{X}_1, \bar{X}_2 Valor medio de X_1, X_2

σ_1, σ_2 Desviación estándar de X_1, X_2

y que ambas tienen distribuciones normales y no-correlacionadas. Lo primero significa que las funciones probabilísticas siguen la función de Gauss, y lo segundo implica que los valores de X_1 no están para nada afectados por los valores que X_2 pueda adoptar. Es conveniente, usar variables normalizadas como sigue:

$$x_1 = \frac{X_1 - \bar{X}_1}{\sigma_1} \tag{2.3.4}$$

$$x_2 = \frac{X_2 - \bar{X}_2}{\sigma_2} \tag{2.3.5}$$

Se logra que x_1 y x_2 tengan un valor medio igual a 0 y desviación estándar igual a 1. Debe notarse que x_1 y x_2 aún son normales *no-correlacionadas* debido a que estas propiedades no se pierden con la transformación lineal. Las variables x_1 y x_2 , debido a que tienen cero valor medio y desviación estándar igual a 1, se llaman variables normales estándar.

La función de falla G(X) resulta en términos de x_1 y x_2 :

$$G(X) = \bar{X}_1 + \sigma_1 \cdot x_1 - \bar{X}_2 - \sigma_2 \cdot x_2 \qquad (2.3.6)$$

23

2.3. Métodos De Cálculo Para Confiabilidad.

De donde vemos que la región de falla está dada por los valores x_1 y x_2 que satisfacen:

$$x_2 > \frac{\bar{X}_1 - \bar{X}_2}{\sigma_2} + \frac{\sigma_1}{\sigma_2} x_1 \tag{2.3.7}$$

Entonces, la zona de falla es el área achurada en la Figura 2.5., cuando x_2 está por encima de la línea A-B. Es decir, la probabilidad de falla es igual a la probabilidad de que valores de x_1 y x_2 caigan dentro de la región por sobre la recta A-B. Los puntos de esta recta corresponden a G = 0. El punto O en el origen de las coordenadas $x_1 - x_2$, corresponde al caso en el que las variables básicas X_1 y X_2 toman un valor igual a su promedio y por eso el punto O es conocido como punto promedio. En la Figura 2.5. el punto O pertenece a la zona segura, pero esto no es cierto para todos los casos. La figura 2.5. también muestra los ejes de coordenadas y_1 y y_2 , obtenidos de la rotación de los ejes $x_1 - x_2$ hasta que y_2 es perpendicular a la superficie de falla A-A.

Transformando las coord. $x_1 - x_2$ en la Figura2.5. a las coord. $y_1 - y_2$ obtenidas por rotación[2]:

$$y_1 = x_1 \cdot \cos \alpha + x_2 \cdot sen\alpha \tag{2.3.8}$$

$$y_2 = -x_1 \cdot \operatorname{sen} \alpha + x_2 \cdot \cos \alpha \tag{2.3.9}$$

Esta transformación es útil para identificar la región de falla de forma muy simple, falla si:

$$y_2 > \boldsymbol{\beta} \tag{2.3.10}$$

Donde β en la Figura 2.5, es la distancia entre el origen O y el punto X^* en la recta G = 0. Por ser perpendicular a la recta, es la "mínima distancia entre el origen y la recta G = 0". La distancia β es llamada también índice de confiabilidad. Se debe notar que la determinación de este índice es completamente geométrica. Debido a

2.3. Métodos De Cálculo Para Confiabilidad.

Figura 2.5: Zona de falla, $G = X_1 - X_2$. Fuente: María Carmen Coronel Uriona

esto, puede ser obtenido por algoritmos que calculan tal distancia mínima y generalmente estos son muy rápidos. El punto X* en la superficie del estado límite, más cercano al origen, es conocido también como *punto de diseño o punto que resulta en la combinación más probable de falla.*

Debido a que la combinación lineal de dos variables normales estándar y a que estas no están correlacionadas, y_2 es también normal estándar. Debido a esto, la probabilidad de falla es:

$$P_f = \operatorname{Probabilidad}\left(y_2 > \beta\right) \tag{2.3.11}$$

La distribución probabilística de variables normales estándar está bien establecida. La Figura 2.6 muestra esta distribución. Las probabilidades se calculan definiendo áreas bajo la curva, la cual se extiende desde $-\infty$ a $+\infty$. El área total bajo la curva es igual a 1.0. La probabilidad de falla es entonces el área sombreada en la extremidad derecha de la curva, por simetría esta área es también igual a la obtenida en la extremidad izquierda:

$$P_f = \Pr{obabilidad(y_2 > -\beta)}$$
(2.3.12)

$$P_f = \Phi(-\beta) \tag{2.3.13}$$

25

2.3. Métodos De Cálculo Para Confiabilidad.

Figura 2.6: Ilustración del indice de confiabilidad y la probabilidad de falla. Φ es la función de densidad normal estándar. Fuente: Luis Celorrio Barragué

En la Figura 2.5 también se muestra el vector x, con sentido de O a X* y longitud β , entonces:

$$\beta^2 = x_1^2 + x_2^2 \tag{2.3.14}$$

Si se calculan las derivadas de β con respecto a x_1 y x_2 :

$$\frac{d\beta}{dx_1} = \frac{x_1}{\beta} = n_1 \tag{2.3.15}$$

$$\frac{d\beta}{dx_2} = \frac{x_2}{\beta} = n_2 \tag{2.3.16}$$

donde n_1 y n_2 son las componentes del vector unitario n en la Figura 2.5. Se nota que las componentes de este vector dan las derivadas del indice de confiabilidad con respecto a las variables x_1 y x_2 , o cuan sensible es β con respecto a cada variable. Los coeficientes n_1 y n_2 (en general, las componentes del vector unitario n) se llaman coeficientes de sensibilidad, y son muy útiles en el análisis. Estos coeficientes son, en valor absoluto, todos menores que 1.0. Los coeficientes de sensitividad dan una idea de que variables son menos importantes en la función de falla, y correspondientemente, requieren menos información.

El cálculo de la probabilidad de falla P_f es exacto si todas la variables involucradas

son normalmente distribuidas y si la función G es lineal. Por lo general, las variables no son normalmente distribuidas y la función G tampoco es lineal. Una ventaja de los procedimientos FORM/SORM³ es que introducen transformaciones apropiadas para convertir todas las variables en normalmente distribuidas. Por esto, la estimación de la probabilidad de falla P_f está influenciada solamente por la nolinealidad de la función G.

Desde que las combinaciones de variables más probable que conducen a la falla del sistema se encuentran alrededor del punto de diseño y desde que la superficie G(X) en los alrededores de este punto pueden ser normalmente reemplazados por un plano, la estimación proveniente de un procedimiento FORM es por lo general bastante adecuada. Otro requerimiento que mejora la estimación de la probabilidad de falla P_f es la intervención de variables no-correlacionadas. Si algunas variables estuvieran correlacionadas, el procedimiento encontrará primero un *set* de variables transformadas no correlacionadas. El cálculo de este set requiere la correlación estadística de la información en pares de variables individuales.

Los procedimientos FORM asumen que la superficie del estado límite G(X) puede ser aproximada por el plano tangente a la superficie en el punto de diseño. Si se considera la Figura 2.7 donde la función G es ploteada en el eje vertical como una función del vector X, la superficie de falla G = 0 es entonces la intersección de la función G con el plano horizontal y el índice de confiabilidad será la longitud entre el punto O y P, ubicado a la distancia mínima de O. Si se empieza con un vector inicial X*, el algoritmo reemplaza la superficie real por un plano tangente a X*. Este plano intercepta G = 0 con una línea recta, y el algoritmo encuentra el punto P* en una distancia mínima entre la intersección y el origen. El punto P* es usado como el nuevo X*, el procedimiento se repite hasta que se produzca convergencia.

³Second Order Reliability Methods

Figura 2.7: Algoritmo iterativo utilizado por FORM para encontrar β . Fuente: María Carmen Coronel Uriona

2.3.3. Método De Segundo Orden (SORM).

Estos métodos están basados esencialmente en los mismos principios que utiliza el procedimiento FORM. La diferencia fundamental es que se puede lograr una mayor precisión en el cálculo de la confiabilidad. Estos métodos utilizan una superficie cuadrática tangente en el punto de diseño a la superficie de falla, en el algoritmo que calcula el índice β . El proceso iterativo es el mismo. De la misma manera se usan variables normalizadas estándar y se transforman todas aquellas variables co-relacionadas a variables independientes.

La idea en que se basan los SORM es la de sustituir la superficie de estado límite por una superficie cuadrática en el punto de diseño cuyo contenido probabilístico se conoce analíticamente. Se usan generalmente dos tipos de aproximaciones: la primera se llama ajuste de curvatura Breitung (1984)[8], Der Kiureghian y de Stefano (1991)[9] y requiere calcular las derivadas segundas de G(u) en el punto de diseño u*, mientras que la segunda se llama ajuste de punto en la que unos semiparaboloides interpolan la superficie de estado límite en unos puntos dados alrededor del punto de diseño.

El algoritmo además calcula, por métodos numéricos, las curvaturas de la superficie de falla y se la aproxima con un paraboloide de la misma curvatura. En general, este método es más oneroso, dado que requiere del cálculo de curvaturas y no siempre resulta en mayor exactitud.

2.4. Conceptos Básicos de Cargas de Diseño.

2.4.1. Cargas Permanentes en Edificios.

Las estimaciones de cargas muertas actuantes en edificios son afectadas cuantitativamente por las variaciones en las dimensiones de los elementos, así como por las variaciones en los pesos específicos de los materiales empleados. Actualmente no se cuenta con datos estadísticos que describan la variabilidad espacial de la carga muerta en los edificios; la única información disponible es la que se refiere a la variabilidad en los pesos específicos de los materiales, de la que es posible inferir en forma aproximada la cargas muertas actuantes sobre las estructuras[10].

El cálculo de la carga muerta es en general sencillo, ya que sólo requiere la determinación de los volúmenes de los distintos componentes de la construcción y su multiplicación por los pesos volumétricos de los materiales constitutivos. En su mayoría las cargas muertas se representan por medio de cargas uniformemente distribuidas sobre las distintas áreas de la construcción, aunque hay casos de cargas lineales (muros divisorios) y concentradas (equipos fijos). Es común la creencia de que las cargas muertas pueden calcularse con mucha exactitud; sin embargo, aunque éstas son las acciones que presentan menor grado de incertidumbre, las diferencias que suele haber entre los valores de cálculo y los reales no son despreciables. Esto se debe a las diferencias entre las dimensiones especificadas en el proyecto y las que resultan en la construcción, a modificaciones y adiciones en los elementos no estructurales y a las variaciones en los pesos volumétricos de los materiales. Al cuantificar la carga muerta en algunas construcciones, se han encontrado diferencias

hasta de 20 por ciento con respecto a las consideradas en el cálculo[4].

El RNE a través de la Norma Técnica E020 de cargas define en el Artículo 2 a la carga permanente como: El peso de los materiales, dispositivos de servicio, equipos, tabiques y otros elementos soportados por la edificación, incluyendo su peso propio, que se propone sean permanentes o con una variación en su magnitud, pequeña en el tiempo[3], y presenta en el Anexo A de esta norma una tabla para calcular el peso de los materiales.

2.4.2. Cargas Vivas en Edificios.

La seguridad y economía de los edificios requiere un conocimiento de las cargas a las que se espera que esté sujeta una estructura durante su vida útil. Si bien la magnitud y duración de las cargas no se puede saber con completa certeza, es posible formular modelos probabilistas que reflejen la naturaleza estocástica de estas cargas. La variación que sufren las cargas vivas con el tiempo en un área dada de piso, durante el periodo de vida útil de un edificio, puede representarse mediante modelos matemáticos que tomen en cuenta el proceso estocástico de los eventos de cargas vivas.[11]

En esta investigación se presentan modelos previamente desarrollados[12] de cargas vivas en edificios, que incluyen el análisis de cargas sostenidas (asociada normalmente con el uso proyectado del espacio), y cargas extraordinarias que representan eventos inusuales de sobrecarga (fiestas o eventos de concurrencia de personas).

2.4.2.1. Carga Sostenida.

La carga sostenida u, es la carga que se conoce como carga viva de servicio de un edificio y se expresa en unidades de carga por unidad de área. Una revisión de los datos de carga ha sugerido para la magnitud[13] el uso de una función de distribución

2.4. Conceptos Básicos de Cargas de Diseño.

de probabilidad Gamma. Los modelos de cargas vivas consideran que la intensidad de las cargas que se presentan en los edificios actúa en un área de piso en forma aleatoria. Para Ellingwood y Culver (1997) la media E(u) es independiente del área de piso A, mientras que la varianza Var(u) se considera dependiente. Esto es:

$$E(u) = m_u \tag{2.4.1}$$

$$Var(u) = \sigma_a^2 + \frac{\sigma_s^2}{A}$$
(2.4.2)

Los valores de m_u , σ_a^2 , σ_s^2 se determinan experimentalmente de datos de cargas vivas de servicio de un edificio; m_u representa el valor medio de la carga sostenida instantánea; σ_a^2 a la varianza de la carga sostenida instantánea; σ_s^2 es una constante experimental que resulta de una selección o un ajuste razonable de datos de cargas en pequeñas áreas[14]. Es aceptable suponer que la carga real sostenida no es uniforme sobre un área de piso dado, por lo que los efectos de carga en un miembro de una estructura pueden tener una amplia variación con respecto a las obtenidas si se supone una carga uniforme. Este efecto depende de la superficie de influencia. Para tomar en cuenta la no uniformidad se considera un factor de corrección de la carga, por lo que la carga sostenida instantánea equivalente a una carga uniformemente distribuida L está dada por las siguientes expresiones[14]:

$$E(L) = m_u = m_L \tag{2.4.3}$$

$$Var(L) = \sigma_a^2 + \frac{k\sigma_s^2}{A}$$
(2.4.4)

Donde k está en función de una superficie particular de influencia. Al usar una aproximación polinomial para las superficies de influencia se sugirió[14] que un valor de k de 2.2, que corresponde a los efectos de carga en una columna, es suficientemente exacto para el diseño. Debido a esto aquí se utiliza k = 2.2 en el análisis. Por otro lado, el modelo que se sigue en esta tesis supone que los cambios de ocupación, cambios de

carga sostenida mostrados en la figura2.8, siguen un proceso de Poisson por lo que el tiempo de espera entre estos cambios se ajusta a una distribución exponencial.

Figura 2.8: Modelo de carga sostenida instantánea. Fuente: Eric Gutiérrez Castillo

2.4.2.2. Carga Extraordinaria.

El modelo para cargas extraordinarias se representa a través de eventos de ocurrencia independientes de Poisson. En la figura 2.9 se muestra este modelo de cargas vivas. Durante cada evento se supone que la gente se reúne en grupos. La ocurrencia de cada uno es un proceso de Poisson con media que depende del área, designada por λ . Este modelo fue sugerido por McGuire y Cornell (1974) y Ellingwood y Culver (1977). La media y la varianza de un evento simple extraordinario E, expresadas en unidades de carga por unidad de área, es[15]:

Figura 2.9: Modelo de carga extraordinaria. Fuente: Eric Gutiérrez Castillo

2.4. Conceptos Básicos de Cargas de Diseño.

$$E(E) = \frac{\bar{\lambda}m_W m_R}{A} \tag{2.4.5}$$

$$Var(E) = \frac{\bar{\lambda}k(m_R\sigma_W^2 + m_W^2\sigma_R^2 + m_W^2m_R^2)}{A^2}$$
(2.4.6)

$$\bar{\lambda} = \sqrt{\frac{A - 155}{6.3}}$$
(2.4.7)

Donde k convierte la carga a un valor equivalente uniformemente distribuido y A es el área total en ft^2 . Los términos m_W , σ_W , m_R y σ_R son la media y la desviación estándar, el subíndice W se refiere al peso de una simple persona y R es el número de gente en un grupo de personas.

2.4.2.3. Carga Extraordinaria Máxima.

La magnitud de la carga extraordinaria está gobernada por una función de distribución Gamma. Por otro lado, la carga máxima ya sea sostenida o extraordinaria se ajusta bien a una función de distribución Extrema Tipo I[14, 15] cuya función de densidad de probabilidad es:

$$f_Y(y) = \alpha e^{-\alpha(y-u) - e^{-\alpha(y-u)}}$$
(2.4.8)

Para representar la correspondiente distribución acumulada de la magnitud de la carga se emplea la siguiente expresión:

$$f_Y(y) = e^{-e^{-\alpha(y-u)}}$$
(2.4.9)

Por la teoría de probabilidades, los parámetros α y u de una función Extrema Tipo I están dados, a partir de la media y la desviación de datos observados, por las siguientes expresiones:

$$\boldsymbol{\alpha} = \frac{1.282}{\boldsymbol{\sigma}(y)} \tag{2.4.10}$$

33

2.4. Conceptos Básicos de Cargas de Diseño.

$$u = \mu(y) - \frac{0.577}{\alpha}$$
(2.4.11)

Donde $\mu(y)$ y $\sigma(y)$ son la media y la desviación estándar de los datos de cargas extraordinarias máximas[16]. En 1977, Wen desarrolló una aproximación para obtener la media y la desviación estándar del máximo de N repeticiones independientes con distribución de variables aleatorias Gamma. En estas expresiones la media de la carga extraordinaria máxima es:

$$\mu_{xm} = \mu_x + p\sigma_x \tag{2.4.12}$$

$$p = \frac{\sqrt{6}}{\pi} \ln N + 0.557 \frac{1 + \frac{\sqrt{6}}{\pi} (\ln N) (\frac{\sigma_x}{\mu_x})}{2(\frac{\sigma_x}{\mu_x}) + \frac{\sqrt{6}}{\pi}}$$
(2.4.13)

Donde μ_x es la media y σ_x la desviación estándar de la intensidad de la carga de un evento simple extraordinario (ecu. 2.4.5 y 2.4.6), expresadas en unidades de carga por unidad de área. Y la desviación estándar σ_{xm} de la carga extraordinaria máxima está dada por:

$$\sigma_{xm} = \frac{\pi}{\sqrt{6}} \sigma_x C_2 \tag{2.4.14}$$

$$C_{2} = \frac{1 + \frac{\sqrt{6}}{\pi} (\ln N) (\frac{\sigma_{x}}{\mu_{x}})}{2(\frac{\sigma_{x}}{\mu_{x}}) + \frac{\sqrt{6}}{\pi}}$$
(2.4.15)

El empleo de las ecu. 2.4.12 a la 2.4.15 da lugar a resultados conservadores del orden de 10% por arriba de los valores reales calculados por la teoría de probabilidades. Posteriormente en 1979, Wen propuso la siguiente ecuación en lugar de la ecu. 2.4.13:

$$p = \frac{\sqrt{6}}{\pi} \ln N(1 + 0.1(\frac{\sigma_x}{\mu_x}))^3$$
(2.4.16)

Con esta ecuación, Wen (1979) mostró que se obtienen resultados tan exactos que sólo difieren en 1% a los resultados obtenidos por la teoría de probabilidades. Estas expresiones serán empleadas en la simulación que se describe en esta tesis.

2.4.2.4. Carga Total Máxima

La carga viva total máxima que ocurre durante el tiempo de vida útil de la estructura se puede obtener a partir de la combinación de algunos de los siguientes tres casos[17].

- La suma de la carga sostenida máxima más la carga extraordinaria, ambas ocurridas en el mismo instante de tiempo durante la vida útil de la estructura.
- La carga extraordinaria máxima que se presenta en la vida útil de la estructura, más la carga sostenida instantánea que actúa en el mismo tiempo que la carga extraordinaria.
- El tercer caso es menos común, la suma de la carga sostenida máxima más la mayor carga extraordinaria.

Se consideró el modelo en el cual la carga extraordinaria máxima en un tiempo dado dentro del periodo de vida útil de la estructura, más la carga sostenida instantánea que actúa en el mismo instante que la carga extraordinaria máxima:

$$L_e max + L \tag{2.4.17}$$

Donde L_emax representa la carga extraordinaria máxima y L la carga sostenida instantánea que se presenta al mismo tiempo que L_emax (ver figura2.10).

Figura 2.10: Modelo de carga viva total. Fuente: Eric Gutiérrez Castillo

La carga viva total máxima, al igual que las cargas sostenida y extraordinaria máximas, están gobernadas por una función Extrema Tipo I[12].

2.4.3. Cargas Laterales en Edificios.

2.4.3.1. Carga Sísmica.

Los terremotos producen movimientos del suelo horizontales y verticales que sacuden la base de una estructura. Debido a que el movimiento del resto de la estructura es resistido por la masa de la estructura (inercia), el sacudimiento del suelo crea deformaciones en la estructura y estas deformaciones producen fuerzas en la estructura. Los movimientos del terremoto producen cargas sísmicas en las estructuras, aun aquellas que no son parte del sistema resistente a las cargas laterales. Estas fuerzas pueden ser horizontales y verticales y pueden someter a los elementos estructurales a fuerzas axiales, momentos y fuerzas cortantes cuyas magnitudes dependen de muchas de las propiedades de la estructura, tales como su masa, su rigidez y su ductilidad. También es importante el periodo de vibración de la estructura (el tiempo que toma a la estructura vibrar en sentido lateral en ambos sentidos).

El diseño sísmico de las estructuras de concreto reforzado es abordado por las disposiciones generales de diseño del ACI 318 y también por las disposiciones especiales de diseño sísmico del capítulo 21 del ASCI 138. Las estructuras de concreto reforzado diseñadas y detalladas de acuerdo con el ACI 318 están pensadas para resistir terremotos sin colapso estructural. En términos generales, la intensidad de un terremoto depende de las aceleraciones, velocidades y desplazamientos del movimiento del suelo que aquél produce[18].

El RNE a través de la norma técnica E030 define los procedimientos a ser aplicados en el análisis sísmico de edificaciones, la finalidad de este documento es limitar el desplazamiento o distorsión de los entrepisos como se puede observar en la figura2.11 a valores aceptables que son definidos en la Tabla N° 11 de esta norma.

Figura 2.11: Definición de las derivas de entrepiso. Fuente: M. Nadim Hassoun

La norma E030 en el capítulo 2 Peligro Sísmico define los valores de Z (Factor de Zona) en la Tabla N°01, también se define los valores de S (Factor de Suelo) y $T_P - T_L$ (Periodos) en las Tablas N° 03 y 04 respectivamente, el valor de la categoría de la edificación U se muestra en la Tabla N° 05, el Coeficiente de Reducción de las Fuerzas Sísmicas R es definido por $R = R_o I_a I_p$, donde los valores de R_o , I_a , I_p son definidos en las Tablas N° 07, 08 y 09 respectivamente, para el Factor de Amplificación Sísmica C, se dan las siguientes ecuaciones en el Articulo 2.5:

$$T = \frac{h_n}{C_T} \tag{2.4.18}$$

$$T < T_P; C = 2.5$$
 (2.4.19)

$$T_P < T < T_L; C = 2.5(\frac{T_P}{T})$$
 (2.4.20)

$$T > T_L; C = 2.5(\frac{T_P T_L}{T^2})$$
 (2.4.21)

El cálculo del periodo fundamental de vibración T es desarrollado en el Articulo 4.5.4, en donde se definen los valores de C_T como: $C_T = 35$ para Pórticos, $C_T = 45$ para Pórticos con cajas de ascensores y escaleras y $C_T = 60$ para Edificios de albañilería, MDL⁴ y sistemas duales. La norma E030 recomienda dos tipos de análisis para el diseño sísmico en el Capítulo 4 Análisis Estructural:

• Análisis Estático o de Fuerzas Estáticas Equivalentes: En este análisis se recomienda el uso de fuerzas laterales repartidas en la altura en función del cortante basal:

$$F_i = \alpha_i V \tag{2.4.22}$$

$$\boldsymbol{\alpha}_{i} = \frac{P_{i}(h_{i})^{k}}{\sum\limits_{j=1}^{n} P_{j}(h_{j})}$$
(2.4.23)

$$T \le 0.5; k = 1.0$$
 (2.4.24)

$$T > 0.5; k = (0.75 + 0.5T)$$
 (2.4.25)

$$V = \frac{ZUCS}{R}P \tag{2.4.26}$$

 Análisis Dinámico Modal Espectral: En este tipo de análisis se define un espectro de aceleraciones, en función de parámetros definidos en la norma E030, la función de este espectro es de ingresar datos de aceleración a cada nivel entrepiso en el análisis dinámico, las expresiones para este caso son:

$$S_a = \frac{ZUCS}{R}g \tag{2.4.27}$$

2.4.3.2. Carga por Viento.

Todas las estructuras están sujetas a la acción del viento y en especial las de más de 2 o 3 pisos de altura o en aquellas en las zonas donde la velocidad del viento

⁴Muros de Ductilidad Limitada

2.4. Conceptos Básicos de Cargas de Diseño.

es significativa o en las que debido a su forma, son más vulnerable a los efectos aerodinámicos. En el caso de las estructuras de acero, por su peso propio relativamente bajo y grandes superficies expuestas a la acción del viento, las cargas del viento pueden ser más importantes que las cargas debidas al sismo. Aunque el viento tiene naturaleza dinámica, es satisfactorio tratar al viento como una carga estática.

La amplia variedad en tamaño y forma de los mismos, tipo de exposición al viento, topografía local así como la naturaleza fortuita del viento tiende a complicar el problema. Las características de estos flujos sólo se pueden establecer a través de observaciones directas en tamaño natural o recurriendo a pruebas en túneles de viento. Sin embargo, la conducta puede ser fijada considerando algunas situaciones de flujo típicas. Una situación de flujo típico se ilustra en la Figura2.12 donde el viento está soplando sobre una cara del edificio con techo a dos aguas[19].

Figura 2.12: Acción del viento sobre una estructura con techo a dos aguas. Fuente: Luis Zapata Baglietto

La norma E020 define la velocidad de diseño del viento hasta 10 m de altura será la velocidad máxima adecuada a la zona de ubicación de la edificación (Ver Anexo 2 – E020) pero no menos de 75Km/h. La velocidad de diseño del viento se obtendrá de la siguiente expresión:

2.5. Calibración De Los Códigos De Diseño Estructural.

$$V_h = V(h/10)^{0.22} \tag{2.4.28}$$

Donde: V_h , es la velocidad de diseño en la altura h en Km/h; V es la velocidad de diseño hasta 10 m de altura en Km/h; h es la altura sobre el terreno en metros.

La carga exterior (presión o succión) ejercida por el viento se supondrá estática y perpendicular a la superficie sobre la cual se actúa. Se calculará mediante la expresión:

$$P_h = 0.005 C V_h^2 \tag{2.4.29}$$

Donde: P_h , presión o succión del viento a una altura h en Kg/m2; C, factor de forma adimensional indicado en la Tabla 4 de la norma E020; V_h , velocidad de diseño a la altura h, en Km/h, definida en el Artículo 12(12.3).

La carga interior del viento para el diseño de los elementos de cierre, incluyendo fijaciones y anclajes, que limitan en cualquier dirección el nivel que se analiza, tales como paneles de vidrio, coberturas, alféizares y elementos de cerramiento, se adicionará a las cargas exteriores calculadas según el Artículo 12.4 de la norma E020, las cargas interiores (presiones y succiones) calculadas con los factores de forma para presión interior de la Tabla 5 de la E020.

2.5. Calibración De Los Códigos De Diseño Estructural.

2.5.1. Confiabilidad y Factores Parciales.

Tradicionalmente, las ecuaciones de diseño estructural han sido de la forma:

2.5. Calibración De Los Códigos De Diseño Estructural.

$$D_n + Q_n = R_a \cdot z \tag{2.5.1}$$

en la cual D_n es el valor de diseño de la carga permanente, Q_n es el valor de diseño de la carga variable, R_a es el valor admisible de la resistencia, y z es la variable a diseñar.

En los formatos de diseño de los códigos estructurales, las ecuaciones de diseño están escritas para hacer la verificación de la capacidad de diferentes tipos de componentes estructurales sometidos a distintos modos de falla. El formato típico para el diseño de estructuras es:

$$\alpha_D \cdot D_n + \alpha_Q Q_n = \varphi \cdot R_C \cdot z \tag{2.5.2}$$

Donde, α_D y α_Q son los factores de amplificación de carga (ambos mayores a 1.0), R_C es la resistencia característica del material, y φ es el factor de reducción de resistencia (menor a 1.0).

En los códigos diferentes factores parciales se especifican para cada material y para cada tipo de cargas. Cuando más de una carga variable actúa, los factores de combinación de cargas son multiplicados en una o más de los componentes de carga variable para tomar en cuenta la reducida probabilidad de que todas las cargas variables estén actuando con sus valores extremos al mismo tiempo.

Los factores de amplificación de cargas junto con los valores característicos son introducidos con el fin de asegurar un nivel de confiabilidad de las estructuras diseñadas de acuerdo al código. Como cada material tiene diferentes incertidumbres asociadas a sus características físicas y mecánicas los factores de amplificación de cargas son distintos para cada uno. La ecuación de diseño propuesta debe ser vista como un método para determinar el valor de z, y por supuesto, la ecuación obedece las leyes de la mecánica. El objetivo es que, mediante su aplicación, el calculista pueda obtener el mismo valor de z que se obtendría efectuando un análisis probabilístico para la probabilidad de falla deseada. El problema entonces se reduce a cuáles factores de amplificación de carga y reducción de resistencia deben ser usados[2].

2.5.2. Objetivo De La Calibración

El objetivo de la calibración de un código de diseño es la determinación de los factores parciales o de amplificación de cargas que deben ser usados con el fin de obtener una probabilidad de falla requerida.

El valor de los parámetros calibrados dependen de las estadísticas utilizadas de las variables básicas involucradas en el diseño. Por ejemplo, se obtendrán diferentes coeficientes de amplificación de cargas y reducción de resistencias si la carga variable es debida a nieve o si es sísmica.

La tarea principal de la calibración de códigos es reducir en lo posible la amplitud del entorno de la probabilidad de falla. Por lo general y para evitar confusiones los códigos adoptan valores únicos para ciertos parámetros. Esto implica que la probabilidad de falla correspondiente a la misma ecuación de diseño tiene variaciones de localidad a localidad. Para reducir la amplitud de la probabilidad de falla es necesario tener varios parámetros libres que permitan la optimización. De allí la necesidad de introducir "factores de carga", "factores de resistencia", "factores de combinación de carga", etc. La flexibilidad permitida por estos factores permiten la aplicación de la misma ecuación de diseño a varias situaciones con la mínima variación en la probabilidad de falla. Una ventaja de este nuevo sistema de diseño es entonces una mayor uniformidad en la probabilidad de falla, no solo entre localidad y localidad, sino también entre material y material. El objetivo es obtener las mismas (o similares) probabilidades de falla para todas las estructuras independientemente del material del que están construidas y de las condiciones de servicio a las que estarán sometidas[2].

2.5.3. Procedimiento Práctico De Calibración De Códigos.

Volviendo a la ecuación (2.5.2), se puede decir que[2]:

$$\frac{Q_n}{z} = \frac{\varphi \cdot R_C}{\alpha_D \cdot \frac{D_n}{Q_n} + \alpha_Q}$$
(2.5.3)

Por otro lado la función de falla G puede ser escrita como:

$$G = R - \left(\frac{Q_n}{z}\right) \cdot \left(\frac{D}{Q_n} + \frac{Q}{Q_n}\right)$$
(2.5.4)

Reemplazando se llega a la función de falla G que permite estudiar la confiabilidad asociada a la variable z obtenida mediante la ecuación de diseño. Así:

$$G = R - \frac{\varphi R_C}{(\alpha_D \gamma + \alpha_Q)} \cdot (\gamma d + q)$$
(2.5.5)

Donde: $\gamma = \frac{D_n}{Q_n}$, relación de cargas de diseño, permanente a variable; $d = \frac{D}{D_n}$, carga permanente normalizada con respecto a su valor de diseño; $q = \frac{Q}{Q_n}$, carga viva normalizada con respecto a su valor de diseño;

Conociendo las estadísticas de R, $d \neq q$, y el valor adoptado para la resistencia característica R_C , el proceso de simulación permitiría obtener la probabilidad de [G < 0], o probabilidad de falla, en función de los parámetros α_D , $\alpha_Q \neq \gamma$. Estos resultados podrían ser representados en una gráfica como la siguiente:

Figura 2.13: Probabilidad de falla vs. Parámetros de diseño. Fuente: Jorge Mario Tocto Correa

Necesariamente el proceso de calibración es un proceso de prueba y error. Los valores de α_D y α_Q que se requieren para satisfacer cierto nivel de confiabilidad deben ser seleccionados después de haber calculado la probabilidad de falla asociada a cada par de valores α_D y α_Q modelados. El valor de φ debe ser determinado al iniciar el análisis. La gráfica anterior relaciona la probabilidad de falla y los factores de reducción de resistencia de acuerdo a diferentes combinaciones de α_D , α_Q y γ . Dado que la probabilidad de falla esta relacionada con el indice de confiabilidad de falla esta relacionada con el indice de confiabilidad de falla esta relacionada con el indice de confiabili-

Los pasos en los que consiste la calibración de un código de diseño son los siguientes[2]:

- 1. Establecer los estados límite de interés.
- Formular las funciones de falla para cada uno de los estados límite, de acuerdo al modelo matemático correspondiente.
- 3. Detectar las variables básicas involucradas en el diseño.
- 4. Encontrar una función de probabilidad que modele las incertidumbres de la variable.
- 5. Evaluar la probabilidad de falla.
- 6. Decidir en función de los resultados.

Este procedimiento es mostrado en la Figura 2.14

Figura 2.14: Diagrama de flujo para la calibración de códigos. Fuente: María Carmen Coronel Uriona

2.5.4. Valores Óptimos De Confiabilidad Estructural

Como se vio en el Ítem2.3.2 el índice de confiabilidad β está directamente relacionado con la probabilidad de falla. Se cumple que mientras mayor es β menor es la probabilidad de falla asociada al sistema analizado.

Los valores del indice de confiabilidad β y su respectiva probabilidad de falla asociada depende de las condiciones de servicio a las cuales esta sometido el sistema analizado. Así habrá un indice de confiabilidad requerido para responder a cargas verticales, otro para responder a cargas sísmicas, otro para responder a cargas de viento, o presiones laterales de tierra, y uno distinto para evaluar la serviciabilidad, por ejemplo[2].

En la tabla 2.1 se muestran los índices de confiabilidad utilizados en la calibración de los códigos americano, canadiense, nórdicos y eurocode. Se muestra las diferencias existentes para el índice de confiabilidad según la naturaleza de las cargas actuantes.

Estándar	Comentarios	β
AISC, LRFD 2010, ANSI A58.1.1982	Cargas verticales(muertas, vivas, nieve)	3.00
	Cargas verticales y de viento	2.50
	Cargas verticales y sísmicas	1.75
Código canadiense para acero, estructuras de concreto y puentes	Con un período de diseño de 30 años)	3.50
Eurocode	Construcción normal	3.50
Códigos nórdicos (Dinamarca, Finlandia, Noruega, Groenlandia y Suecia)	-	4.30

Tabla 2.1: Índices de confiabilidad utilizados en la calibración de códigos estructurales. Fuente: The Joint Committee of Structural Safety

Es conocido que la confiabilidad de una estructura estimada para las cargas y resistencias podría no tener relación con la confiabilidad actual de la estructura. Este es el caso en el que la modelación probabilística que es la base de la confiabilidad estructural está muy influenciada por la subjetividad y por eso la confiabilidad estimada debería ser interpretada solo como una medida comparativa. Por ello no es posible juzgar si la confiabilidad estimada es lo suficientemente alta sin establecer primero una referencia más formal para la comparación.

Tal referencia puede establecerse definiendo una mejor u óptima práctica estructural. Los valores típicos para la correspondiente probabilidad de falla anual están en el rango de 10^{-6} a 10^{-7} dependiendo del tipo de estructura y las características del modo de falla considerado. La forma más simple es usar los códigos de diseño existentes como base para la identificación de la mejor práctica de diseño. Alternativamente la mejor práctica de diseño puede ser determinada después de consultar un panel de expertos reconocidos.

En el caso en el que la modelación probabilística se base en determinaciones subjetivas la aproximación más racional es establecer el diseño óptimo basado en una teoría de decisiones económica. Una optimización económica de la confiabilidad estructural depende de las consecuencias de falla tanto como del costo relativo necesario para incrementar la seguridad. Si el costo que incrementa la seguridad es pequeño siempre se podría llevar a cabo las mejoras. Obviamente esto no podrá ser practicado en ciertos casos, pero ese es otro problema.

Como resultado de este razonamiento The Joint Committee for Structural Safety (JCSS), ha propuesto un modelo de diseño probabilístico basado en el criterio económico y en las consecuencias de una posible falla. La Tabla 2.2. mostrada a continuación tiene dos condiciones: una para las consecuencias de falla y una para los costos relativos necesarios para incrementar la seguridad. Una mayor confiabilidad es necesaria si las consecuencias de la falla son más graves y si el costo relativo para lograrla es bajo[2].

Costo	Consecuencias		
Relativo	Menores	Moderadas	Graves
Alto	$\beta = 3.1 \left(P_f \approx 10^{-3} \right)$	$\beta = 3.3 \left(P_f \approx 5 \cdot 10^{-4} \right)$	$\beta = 3.7 \left(P_f \approx 10^{-4} \right)$
Normal	$\beta = 3.7 \left(P_f \approx 10^{-4} \right)$	$\beta = 4.2 \left(P_f \approx 10^{-5} \right)$	$\beta = 4.4 \left(P_f \approx 5 \cdot 10^{-6} \right)$
Bajo	$\beta = 4.2 \left(P_f \approx 10^{-5} \right)$	$\beta = 4.4 \left(P_f \approx 5 \cdot 10^{-5} \right)$	$\beta = 4.7 \left(P_f \approx 10^{-6} \right)$

Tabla 2.2: Índices de confiabilidad para un período de referencia de un año de acuerdo a modelo probabilístico. Fuente: The Joint Committee of Structural Safety

En muchos países los índices de confiabilidad han sido determinados tomando en cuenta los códigos existentes. La idea es que la aplicación de una investigación propia no difiera demasiado de los índices que son utilizados actualmente.

La tabla 2.3 relaciona el índice de confiabilidad que conviene usarse si las consecuen-

2.5. Calibración De Los Códigos De Diseño Estructural.

cias de los daños son severas, moderadas y menores para los estados límite último y de servicio.

Estado	Niveles de daño		
límite	Menores Moderadas Graves		
De servicio	2.0	2.5	3.0
Ultimo	4.2	4.7	5.2

Tabla 2.3: Índices de confiabilidad según estado límite y niveles de daño. Fuente: The Joint Committee of Structural Safety

2.5.5. Combinaciones de Carga en Las Norma de Diseño.

En las secciones 9.2.1 al 9.2.3, del capítulo 9, de la norma técnica E060[3] propone 5 combinaciones de diseño para calcular la resistencia estructural requerida, es preciso indicar que las combinaciones de diseño de nuestra norma son muy parecidas a las indicadas en al version del ACI 318-99[20], de la sección 9.2 Required Strength del capitulo 9 Strength And Serviceability Requirements. Los requisitos de resistencia de la norma técnica E060 se ve en la Tabla2.4

RNC - E060 (1989)	RNE - E060 (2009)	ACI 318-99	ACI 318-14
U = 1.5D + 1.8L	U = 1.4D + 1.7L	U = 1.4D + 1.7L	U = 1.4D
$U = 1.25(D + L \pm W)$	$U = 1.25(D + L \pm W)$	$U = 0.75(1.4D + 1.7L \pm 1.7W)$	U = 1.2D + 1.6L + 0.5(Lr/S/R)
$U = 0.9D \pm 1.25W$	$U = 0.9D \pm 1.25W$	$U = 0.9D \pm 1.3W$	U = 1.2D + 1.6(Lr/S/R) + (1.0L/0.5W)
$U = 1.25(D + L \pm E)$	$U = 1.25(D+L) \pm E$	$U = 1.05D + 1.28L \pm 1.40E$	$U = 1.2D \pm 1.0W + 1.0L + 0.5(Lr/S/R)$
$U=0.9D\pm1.25E$	$U=0.9D\pm E$	$U=0.9D\pm1.43E$	$U = 1.2D \pm 1.0E + 1.0L + 0.2S$
			$U=0.9D\pm1.0W$
			$U=0.9D\pm1.0E$

Tabla 2.4: Combinaciones de carga. Fuente: RNC-RNE-ACI

Estas relaciones de la Tabla2.4, están basadas en las combinaciones de resistencia del código del Instituto Americano del Concreto (ACI)[1] que en la sección 5.3.1. del Capitulo 5 - Combinaciones y factores y de carga, propone la Tabla 5.3.1 de las combinaciones de cargas para un diseño estructural adecuado, cabe indicar que esta sección del ACI, es una transcripción del documento ASCE/SEI 7-10[21] en la sección 2.3 Combining Factored Loads Using Strength Desing del capitulo 02 Combinations of Loads.

Usted debe observar que los factores de carga para cargas muertas son mucho más pequeños que los usados para cargas vivas y ambientales. Obviamente, la razón es que podemos estimar las magnitudes de las cargas muertas más exactamente que las magnitudes de las otras cargas. En este aspecto, usted notará que las magnitudes de las cargas que permanecen en su lugar por largos periodos son mucho menos variables que las cargas aplicadas por periodos breves tales como el viento y la nieve[22].

Como se puede observar la norma técnica E060 adoptó el mismo formato, pero incrementó el valor de los factores de amplificación de cargas y mantuvo el valor de los factores de reducción de resistencia del ACI. La consecuencia del incremento de los coeficientes de amplificación de cargas es un diseño más conservador y por ende más costoso que el propuesto por el ACI.

2.6. Diseño por Estados Límites.

2.6.1. Antecedentes.

Actualmente, la profesión del diseño estructural se preocupa por la filosofía de los estados límite. El término estado límite se usa para describir la condición en que una estructura o parte de ella, deja de cumplir la función para la que fue diseñada. Hay tres categorías de estados límite: por resistencia, servicio, y evento extremo[18]. La norma AASHTO 2010 LRFD Bridge Specifications define un cuarto estado limite de fatiga y fractura.

El concepto de estado límite se utiliza para ayudar a definir la falla de una

estructura en el análisis de confiabilidad. Un estado límite es un rango entre condiciones deseadas y no deseadas de una estructura. Este límite es a menudo representado matemáticamente por una función de falla, el rendimiento no deseado puede producirse muchos modos de falla como: grietas, corrosión, deformaciones, que exceden la capacidad de carga de la estructura[23].

Cuando una estructura ya no es capaz de cumplir con alguna de las funciones de uso para la cual fue concebida, se dice que ha alcanzado alguno de los Estados Límites. En el diseño de estructuras de concreto armado, se reconocen, tres grandes grupos de Estados Límites[24].

2.6.2. Estado Límite de Resistencia.

El estado límite de resistencia se refiere a proporcionar la fuerza o la resistencia suficiente para satisfacer la desigualdad de la ecuación básica del LRFD para las combinaciones de carga estadísticamente significativas que se espera una estructura pueda experimentar en su vida de diseño. Este estado límite evalúa la resistencia a la flexión, corte, torsión, y la carga axial. El factor de resistencia ϕ se determina estadísticamente, que por lo general es inferior a 1.0 y tendrá diferentes valores para diferentes materiales y estados límite de diseño[25].

2.6.3. Estado Límite de Servicio.

Los estados límite de servicio se refieren al desempeño de las estructuras bajo cargas normales de servicio y tienen que ver con los usos y/o la ocupación de las estructuras. El estado límite de servicio se mide considerando las magnitudes de las deflexiones, grietas y vibraciones de las estructuras así como la cantidad de deterioro superficial del concreto y la corrosión del refuerzo. Observe que estos aspectos pueden perturbar el uso de las estructuras[18].

2.6. Diseño por Estados Límites.

Este estado no involucra el colapso parcial o total, pero sí puede involucrar un mal funcionamiento de la estructura bajo cargas de servicio. Ya que este estado tiene asociado un menor peligro de pérdidas de vidas humanas, generalmente se suele tolerar una mayor probabilidad de ocurrencia que para el caso de los estados límites de resistencia[24].

2.6.4. Estado Límite de Evento Extremo.

Los estados límites correspondientes a eventos extremos. Están dirigidos a garantizar la supervivencia estructural del puente durante una inundación, un terremoto principal, cuando es embestido por una embarcación, o vehículo o el flujo de hielo, posiblemente donde la fundación esté en condiciones socavadas. Se considera que los estados límites extremos son ocurrencias únicas cuyo periodo de retorno puede ser significativamente mayor al periodo de diseño del puente. La probabilidad unida de estos acontecimientos es sumamente baja, y, por consiguiente, se especifica que son aplicadas separadamente. Bajo de estas condiciones extremas, se espera que la estructura experimentara considerables deformaciones inelásticas.[26]

En el diseño de edificios convencionales, se suele empezar por dimensionar las secciones y los refuerzos de acero utilizando para ello el estado límite de resistencia. Posteriormente se realizan las verificaciones necesarias para asegurar que las dimensiones y refuerzos cumplen con los estados límites de servicio. Se sigue esta secuencia ya que la función principal de los elementos estructurales de los edificios convencionales es la de resistir las cargas sin poner en riesgo a los ocupantes, finalmente se analiza para condiciones de eventos extremos[24].

2.6.5. Calibración de Factores de Carga y Resistencia.

Una forma para tratar con este problema es seleccionar factores de carga y después calcular los factores de resistencia, para un índice de confiabilidad objetivo β_t . Este procedimiento ha sido usado por varias autoridades de códigos de diseño como AASHTO, OMTC, CHBDC. Siguiendo el marco modelo para determinar factores de resistencia para el diseño estructural propuestos por Ellingwood et al. (1980), se proponen los siguientes pasos como marco para la aplicación de dicho método a este trabajo[27]:

- Las cargas factorizadas pueden ser definidas como el valor medio de carga, más algún número de desviación estándar de la carga.
- Para un conjunto de factores de carga, el valor del factor de resistencia puede ser asumido para varios tipos de estructuras y varios componentes de carga, cortante, momento, etc. Produciendo un gran número de valores para el índice de confiabilidad.
- Los índices de confiabilidad son comparados con el índice de confiabilidad objetivo. Si resulta una agrupación cercana, una combinación adecuada de factores de carga y resistencia han sido obtenidos.
- Si no resulta una agrupación cercana, un nuevo conjunto de factores de carga experimentales pueden ser usados y el proceso repetido hasta que los índices de confiabilidad resulten alrededor del grupo, y estén cerca de, el índice de confiabilidad objetivo.
- Los factores de carga y resistencia resultantes, tomadas juntas producirán índices de confiabilidad aceptables cerca del valor objetivo seleccionado por el código de diseño.

2.6. Diseño por Estados Límites.

La anterior descripción supone que los factores de carga asumidos son adecuados factores de carga. Si el proceso de variar los factores de resistencia y calcular los índices de confiabilidad no convergen a un determinado grupo aceptable de índices de confiabilidad, entonces las suposiciones de los factores de carga deben ser revisadas. De hecho, varios conjuntos de factores de carga propuestos deben ser investigados para determinar su efecto en el grupo de índices de confiabilidad.[26]

Capítulo 3

MATERIALES Y MÉTODOS.

3.1. Definición de Funciones de Falla.

Durante el diseño estructural siempre se tiene en cuanta los temas de seguridad, serviciabilidad y economía. La seguridad asegura la estabilidad de una estructura bajo cargas de servicio y condiciones extremas. La serviciabilidad regula las deflexiones excesivas, deformaciones permanentes, agrietamientos, vibraciones de tal manera que los usuarios no se percaten de estos fenómenos y generen situaciones de alarma. La Norma Técinca E060 del RNE está determinada con el diseño de elementos sometidos a cargas gravitacionales y extraordinarias, por lo cual se analizarán cuatro tipos de funciones de falla: flexión, corte (Estados límite de Resistencia), deflexiones (Estados límite de Servicio), y distorsiones (Estados límite de Evento Extremo).

La flexión producida por cargas verticales se verifica en su mayoría en vigas, losas y cimentaciones. El corte por su parte puede verificarse de igual modo en vigas, losas, columnas y elementos de conexión, pero el efecto del corte en los dos últimos es dominado por las cargas sísmicas, por lo que no se analiza el corte en este tipo de elementos estructurales. Las mayores deflexiones en elementos estructurales se verifican en las losas de piso o techo, sometidas a cargas verticales fundamentalmente, por lo que es un estado que debe ser considerado.

La estructura utilizada para la calibración de los factores parciales en el caso de flexión y fuerza cortante, es una vigueta de aligerado de dos tramos de 5.50 m simplemente apoyada. El índice de confiabilidad para el estado límite de serviciabilidad se verifica en una vigueta de aligerado simplemente apoyada con una luz de 3.5 m. El peralte de la losa es igual a 20 cm, como es la usanza de la región[2].

3.1.1. Análisis de la Flexión Pura.

Es importante comprender este fenómeno para luego deducir las expresiones a usar tanto en el análisis como en el diseño. El análisis implica fundamentalmente la determinación del momento resistente de una sección completamente definida. El diseño es el proceso contrario: dimensionar una sección capaz de resistir el momento aplicado.

El diseño de secciones transversales de elementos a flexión deberá basarse en la expresión:

$$M_u \le \varphi \cdot M_n \tag{3.1.1}$$

Donde:

 M_u : es la resistencia requerida por flexión en la sección analizada.

 M_n : es la resistencia nominal a la flexión de la sección.

 φ : 0.90 para flexión sin carga axial o con carga axial de tracción.

La resistencia de una sección transversal debe satisfacer las siguientes condiciones fundamentales: a) equilibrio estático y b) compatibilidad de deformaciones. Las hipótesis en las que se basa el diseño por flexión consideradas por la norma técnica E060 son las siguientes:

1. Las deformaciones en el refuerzo y en el concreto se supondrán directamente proporcionales a la distancia del eje neutro (para vigas de poco peralte $h/l < 1/8 \sim 1/10$).

Figura 3.1: Proporcionalidad de deformaciones del concreto y acero. fuente: Pillai Concreto Reforzado

- 2. Existe adherencia entre el concreto y el acero de tal manera que la deformación del acero es igual a la del concreto adyacente.
- La máxima deformación utilizable del concreto en la fibra extrema a compresión se supondrá igual a 0.003 (falla por aplastamiento).
- 4. El esfuerzo en el refuerzo deberá tomarse como E_s veces la deformación del acero; para deformación mayores a las correspondientes a f_y , el esfuerzo se considerará independientemente de la deformación e igual a f_y .

Figura 3.2: Curva esfuerzo-deformación del acero de refuerzo. Fuente: Teodoro Harmsen

- 5. La resistencia a tracción del concreto no será considerada en los cálculos.
- 6. El diagrama esfuerzo-deformación para la zona de esfuerzos de compresión del concreto se puede definir como:
 - a) Un esfuerzo constante en el concreto de $0.85 \cdot f'_c$ que se supondra uniformemente distribuido en una zona equivalente de compresión, limitada por los bordes de la sección transversal y una linea recta paralela al eje neutro, a una distancia $a = \beta_1 \cdot c$ de la fibra de deformación unitaria de compresión. Ver Figura 3.3.

Figura 3.3: Distribución de esfuerzos en el concreto en compresión de una sección transversal. Fuente: James k. Wing

b) El factor β_1 deberá tomarse como 0.85 para resistencias de concreto f'_c hasta de $280kg/cm^2$. Para resistencias superiores a $280kg/cm^2$ disminuirá a razón de 0.05 por cada $70kg/cm^2$ de aumento de f'_c , con un valor mínimo de 0.65.

Los elementos sometidos a flexión casi siempre fallan por compresión del concreto, sin embargo el concreto puede fallar antes o después que el acero fluya. La naturaleza de la falla es determinada por la cuantía de refuerzo y es de tres tipos[28]:

1. Falla por tensión: el acero fluye y el elemento exhibe una falla dúctil. Se aprecian grandes deflexiones y rajaduras antes del colapso lo cual alerta a los usuarios acerca del peligro inminente. Estas secciones son llamadas también sub-reforzadas.

- 2. Falla por compresión: el acero no tiene oportunidad de fluir y el concreto falla repentinamente. Estas secciones son llamadas sobre-reforzadas. La resistencia de una sección sobre-reforzada es mayor que la de otra sub-reforzada de dimensiones similares. Sin embargo, la primera no tiene comportamiento dúctil y el tipo de colapso no es conveniente. En el diseño se evita este tipo de falla.
- Falla balanceada: se produce cuando el concreto alcanza la deformación unitaria última de 0.003 simultáneamente de la fluencia del acero. La falla es frágil y no deseada.

Por seguridad la norma técnica E060 recomienda que todas las secciones se diseñen para fallar por tracción y por ello limita la cuantía de refuerzo a $0.75\rho_b$ (sección $10.3.4^1$).

3.1.1.1. Modelo Matemático Utilizado para Flexión.

De la distribución de esfuerzos mostrada en la Figura 3.3 se establece la condición de equilibrio:

$$C = T \tag{3.1.2}$$

$$0.85 \cdot f'c \cdot b \cdot a = A_s \cdot f_y \tag{3.1.3}$$

El momento resistente nominal de la sección estará dado por:

$$Mn = C \cdot \left(d - \frac{a}{2}\right) = T\left(d - \frac{a}{2}\right) \tag{3.1.4}$$

De donde se obtiene:

¹Reglamento Nacional de Edificaciones, Empresa Editora Macro E.I.R.L., pag. 438

3.1. Definición de Funciones de Falla.

$$Mn = 0.85 \cdot f'c \cdot b \cdot a \cdot \left(d - \frac{a}{2}\right) \tag{3.1.5}$$

$$Mn = A_s \cdot f_y \cdot \left(d - \frac{a}{2}\right) \tag{3.1.6}$$

Finalmente:

$$Mn = b \cdot d^2 \cdot f'c \cdot w \cdot (1 - 0.59 \cdot w) \tag{3.1.7}$$

$$Mu = \boldsymbol{\varphi} \cdot \boldsymbol{b} \cdot \boldsymbol{d}^2 \cdot \boldsymbol{f}' \boldsymbol{c} \cdot \boldsymbol{w} \cdot (1 - 0.59 \cdot \boldsymbol{w}) \tag{3.1.8}$$

Donde:

Mu Resistencia última requerida

Mn Resistencia nominal de la sección transversal

b Ancho de la zona en compresión

d Peralte efectivo de la sección transversal

 φ Factor de reducción de resistencia, 0.9

 $w = \rho \cdot \frac{fy}{f'c}$ donde fy es el esfuerzo de fluencia del acero de refuerzo, f'c es la resistencia a compresion del concreto y ρ es la cuantía de acero requerida $\rho = \frac{As}{b \cdot d}$ donde As es el área de acero requerida.

3.1.2. Análisis de la Fuerza Cortante.

El efecto de la fuerza cortante es un fenómeno sumamente complejo y en él entran en juego numerosas variables. Se han desarrollado modelos matemáticos que buscan explicarlo, sin embargo, no se ha conseguido un planteamiento teórico que sea totalmente compatible con lo observado experimentalmente. Por ello, los códigos basan sus requerimientos para el diseño en parámetros semi-empíricos[28].

La falla debida a esfuerzo cortante es frágil y siempre debe ser evitada. No se trata

de esfuerzo cortante propiamente dicho, sino de su transformación (Figura 3.4).

Figura 3.4: Rajaduras de tracción diagonal. Fuente: James k. Wing

El diseño de las secciones transversales de los elementos sujetos a fuerza cortante deberá basarse en la expresión:

$$Vu \le \varphi \cdot Vn \tag{3.1.9}$$

Donde:

Vu es la resistencia requerida por corte en la sección analizada

Vn es la resistencia nominal al corte de la sección

 $\boldsymbol{\varphi}$ factor de reducción de resistencia, 0.85

El ítem 11.1.1 de la norma técnica E060[3] establece que la resistencia nominal Vn estará conformada por la contribución del concreto Vc y la del acero Vs de tal forma que:

$$Vn = Vc + Vs \tag{3.1.10}$$

Si la reacción del apoyo induce compresión en el elemento, si las cargas están aplicadas en la parte superior de la viga y no hay cargas concentradas entre la cara del apoyo y una sección ubicada a d de ella, entonces las secciones situadas en este tramo se diseñarán para un cortante último igual al correspondiente a la sección ubicada a ddel apoyo. Esta sección se denomina sección crítica y es la que se encuentra sometida al mayor cortante de diseño del elemento[29]. En la figura3.5 se muestra gráficamente la implicancia de esta consideración.

Figura 3.5: Diagrama de fuerzas cortantes para el diseño de vigas. Fuente: James k. Wing

La resistencia del concreto a la fuerza cortante (Vc) varía de acuerdo al tipo de falla del elemento. En algunos casos, después de la primera fisura inclinada no es posible soportar mayor carga que la que produjo el agrietamiento. En otros, el elemento es capaz de soportar cargas hasta 50% mayores. Puesto que no ha sido posible establecer expresiones prácticas que determinen convenientemente el incremento de la resistencia del concreto después del agrietamiento diagonal, el código del ACI, así como la norma técnica E060 (basada en las normas del ACI), han tenido a bien despreciar este aporte adicional, que en muchos casos no existe, y considerar que la resistencia del concreto al corte es igual a la carga que produce la primera fisura inclinada.

Las variables que influyen directamente en la determinación de Vc son las siguientes:

1. Resistencia del concreto a la tracción. Es un parámetro importante pues las

fisuras se producen por una falla del concreto en tensión. En la formulación presentada se asocia la resistencia a la tracción al término $\sqrt{f'c}$ pues, existe una relación directa entre ellos.

- 2. Cuantía de acero longitudinal. Este factor juega un papel importante pues está relacionado con el número de grietas de flexión que se presentan. Mientras mayor sea la cuantía de acero, menos grietas verticales se formarán, reduciendo la posibilidad que se inicie la formación de fisuras de flexo-tracción.
- 3. Esbeltez del elemento analizado. La capacidad de agrietamiento inclinado disminuye con el incremento de la esbeltez. Esta puede expresar como la relación de *cortante/peralte* y para elementos simplemente apoyados sometidos a cargas concentradas es igual a M/Vd. Este término se incluye en la formulación presentada por el código del ACI para la determinación de Vc.
- 4. Carga axial. La carga axial de compresión incrementa la resistencia del concreto a la fuerza cortante, mientas que la de tracción la disminuye.
- 5. Puntos de corte de varillas longitudinales. Los puntos donde las varillas longitudinales son cortadas están sometidos a fuertes concentraciones de esfuerzos que ocasionan una disminución de la carga de fisuración diagonal.
- 6. Tamaño del elemento. Mientras mayor es el tamaño del elemento, menor es la carga de agrietamiento diagonal.

3.1.2.1. Modelo Matemático Utilizado para Cortante.

En el ítem 11.3.2.1 de la norma técnica E060[3] se presentan las expresiones que permiten determinar la resistencia del concreto al corte para diferentes situaciones. Para elementos sometidos a fuerza cortante y momento flector:

$$Vc = \left(0.50 \cdot \sqrt{f'c} + 176 \cdot \rho_w \cdot \frac{Vu \cdot d}{Mu}\right) \cdot b_w \cdot d \tag{3.1.11}$$

62

3.1. Definición de Funciones de Falla.

Donde:

$$\rho_w = \frac{As}{b_w \cdot d}$$

El término $\frac{Vu \cdot d}{Mu}$ no se considerará mayor que la unidad. La expresión simplificada y de uso generalizado para el término Vc es la siguiente:

$$Vc = 0.53 \cdot \sqrt{f'c} \cdot b_w \cdot d \tag{3.1.12}$$

La resistencia al corte aportada por el acero transversal (Vs) se determina analizando la fuerza ejercida por el acero a lo largo de una fisura diagonal. La expresión utilizada es:

$$Vs = A_{\nu} \cdot fy \cdot \frac{d}{S} \tag{3.1.13}$$

donde d es el peralte efectivo de la sección transversal y S el espaciamiento de los estribos.

3.1.3. Análisis de Deflexiones.

El control de deflexiones es una etapa muy importante en el diseño de estructuras no sólo en el caso del concreto armado. Un exceso de deflexiones estropea la apariencia de la estructura y en muchos casos, alarma a los usuarios sin motivo, ya que una deformación excesiva no necesariamente es síntoma de falla inminente[22].

A pesar de los factores que tienden a aumentar la deformación de los elementos, si las recomendaciones propuestas por el ACI son tomadas en consideración, no deberá esperarse mayores inconvenientes ocasionados por el exceso de deflexiones. El código del ACI propone dos métodos para el control de deflexiones a nivel de cargas de servicio. El primero de ellos es aplicable a elementos sometidos a flexión que no están ligados a piezas no estructurales que puedan ser afectadas por deflexiones excesivas. Este método consiste en dar un espesor o peralte mínimo a losas y vigas, que garantice que las deformaciones se mantengan dentro de un rango aceptable.

En la Tabla 3.1 se muestran los peraltes mínimos requeridos, en función de la longitud de diseño, los cuales dependen de la naturaleza del elemento y de sus condiciones de apoyo.

	Peralte mínimo, h			
Elemento	Simplemente apoyado	Un extremo continuo	Ambos extre- mos continuos	Voladizo
	Elementos qui otros miembro	e no soportan ni os que pueden se	están en contac r dañados por d	cto con tabiquería u leflexiones excesivas.
Losas macizas arma- das en un sentido	1/20	1/24	1/28	1/10
Vigas o losas nerva- das armadas en una dirección	1/16	<i>l/</i> 18.5	1/21	1/8

Tabla 3.1: Peraltes mínimos en losas y vigas sugeridos por el código del ACI para el control de deflexiones. Fuente: ACI 318-14

Los valores de la tabla anterior han sido propuestos para concretos de peso normal de 2300 a $2400kg/m^3$ y acero con refuerzo de fluencia de $4200kg/cm^2$.

Consecuentemente, la norma técnica anterior E060 (RNC²) así como el ACI, propone en el ítem 10.4.1 peraltes mínimos en elementos armados en una dirección sometidos a flexión. No sería necesario verificar las deflexiones producidas por cargas estáticas si se cumple con los siguientes requerimientos:

1. En losas aligeradas continuas conformadas por viguetas de 10*cm* de ancho, bloques de ladrillo de 30*cm* de ancho, y losa superior de 5*cm*, con sobrecargasmenores a $300kg/cm^2$ y luces menores de 7.5*m*, cuando se cumple que $h \ge l/25$.

²Reglamento Nacional de Construcciones

- 2. En losas macizas continuas con sobrecargas menores a $300kg/cm^2$ y luces menores de 7.5m cuando se cumple que $h \ge l/30$.
- 3. En vigas que forman pórticos, cuando se cumple que $h \ge l/16$.

Si la viga, losa aligerada o losa maciza, se encuentra en voladizo, o sobre ella se apoyan elementos que pueden ser dañados por deflexiones excesivas, será necesario verificar las deflexiones, no siendo aplicable las excepciones anteriores.

El segundo método que el ACI propone para el control de deflexiones consiste es estimar su magnitud y verificar que no exceda los límites propuestos por el código. Esta tabla también la copia la norma técnica E060. Las flechas máximas permitidas se presentan en la Tabla 3.2.

Tipo de elemento	Deflexión considerada	Deflexión límite
1. Techos llanos que no soporten ni estén ligados a elementos no es- tructurales que puedan ser daña- dos por deflexiones excesivas.	Deflexión instantánea debi- da a la aplicación de la car- ga viva.	1/180
2. Pisos que no soportan ni están ligados a elementos estructurales que puedan ser dañados por defle- xiones excesivas.	Deflexión instantánea debi- da a la aplicación de la car- ga viva.	1/360
3. Techos o pisos que soportan o es- tán ligados a elementos no estruc- turales que puedan ser dañados por deflexiones excesivas.	Parte de la flecha total que ocurre después de la colo- cación de elementos no es- tructurales (la suma de la	1/480
4. Techos o pisos que soportan o es- tán ligados a elementos estructura- les que no se dañan con deflexiones excesivas.	deflexión diferida y la de- flexión inmediata debida a cualquier carga viva adicio- ual).	1/240

Tabla 3.2: Deflexiones máximas por el código del ACI y la norma técnica E060. Fuente: RNE

La norma técnica E060 especifica que la luz de cálculo l corresponde a la suma de la luz libre más el peralte del elemento del cual se está calculando la deflexión, en la sección 9.6[3].

3.1.3.1. Modelo Matemático Utilizado para Deflexiones

Las deflexiones de los elementos de concreto armado son función del tiempo y por lo tanto pueden ser de dos tipos: instantáneas y a largo plazo. Las deformaciones a largo plazo pueden llegar a ser el doble de las deformaciones instantáneas.

Las deflexiones instantáneas son deformaciones elásticas y por lo tanto las expresiones de resistencia de materiales para materiales elásticos pueden ser utilizadas. La expresión de la deformación tiene usualmente la siguiente forma:

$$\Delta = k \cdot \frac{w \cdot L^4}{E \cdot I} = k_1 \cdot \frac{M \cdot L^2}{E \cdot I}$$
(3.1.14)

donde Δ es por lo general la deflexion al centro de la luz, w es la carga total, L es la luz del elemento, EI es la rigidez a la flexión de la sección de referencia, M es el momento máximo y k y k_1 son constantes que dependen de la distribución de la carga, condiciones de borde y variación de EI (si las hay). Por ejemplo, k = 5/384 y $k_1 = 5/48$ si se trata de una viga simplemente apoyada con una carga uniformemente distribuida en toda la luz.

El concreto es un material que se agrieta al ser sometido a un momento superior al momento crítico que es el que ocasiona esfuerzos de tracción en la sección en la que se excede el módulo de ruptura del material. El momento flector que actúa sobre una sección influye en su fisuramiento y éste, a su vez, en su momento de inercia. Por lo tanto la inercia de la sección está directamente relacionada con el momento flector al que está sometida. Branson[30] propuso una ecuación empírica basada en el análisis estadístico de gran número de ensayos para la determinación del momento de inercia efectivo Ie de una sección. Este parámetro toma en consideración el agrietamiento que el elemento presenta. El ACI deriva a partir de ella la siguiente ecuación:

3.1. Definición de Funciones de Falla.

$$I_e = \left(\frac{M_{cr}}{M_a}\right)^3 \cdot I_g + \left[1 - \left(\frac{M_{cr}}{M_a}\right)^3\right] \cdot I_{cr}$$
(3.1.15)

donde:

 M_{cr} es el momento flector crítico.

 M_a es el momento flector máximo al que está sometida la sección, bajo la condición para la cual se está evaluando la flecha.

 I_g es el momento de inercia de la sección bruta del concreto, sin agrietar, respecto al centro de gravedad, despreciando la presencia del refuerzo.

 I_{cr} es el momento de inercia de la sección rajada, respecto del eje neutro.

La ecuación anterior es relativamente simple y da los valores limites correctos de $I_e = I_g$ para $M_a \leq M_{cr}$ y $I_e \approx I_{cr}$ para $M_a \gg M_{cr}$, en la que la sección esta severamente agrietada. Cuando $M_a/M_{cr} \geq 3$, $I_e \approx I_{cr}$.

Basados en la inercia efectiva, I_e , la curva de momento-deflexión de un elemento bajo cargas de corto plazo (o inmediatas) tiene la forma mostrada en la Figura 3.6. el valor de I_e depende de la magnitud del momento.

Figura 3.6: Curva momento-deflexión inmediata con inercia efectiva I_e . Fuente: James k. Wing

Por lo tanto, para diferentes niveles de carga (y en consecuencia, diferente momento), tales como carga muerta actuando sola o carga muerta y carga viva, las deflexiones respectivas (Δ_D y Δ_{D+L}) deberían ser calculadas con los valores de I_e dados de la ecuación propuesta por Branson para los correspondientes niveles de momento total (M_D y M_{D+L}) como se indica en la Figura 3.6. La deflexión incrementada, es decir, la deflexión Δ_L debida a carga viva, se obtiene como la diferencia entre las deflexiones calculadas con y sin la misma, esto es, $\Delta_L = \Delta_{D+L} - \Delta_D$.

El momento de inercia crítico I_{cr} , es el momento de inercia de la sección agrietada considerando la presencia del refuerzo. Para determinarlo se emplea el concepto de sección transformada, el cual es empleado para análisis elásticos y que es aplicable en este caso en el cual el concreto es analizado bajo condiciones de servicio.

La norma técnica E060, no toma en cuenta los niveles de momento actuantes en una sección y asume por seguridad que la inercia efectiva de la sección corresponde a la inercia crítica en la que la sección transversal se encuentra completamente agrietada, $I_e = I_{cr}$. En la figura 3.7 se ilustra el cálculo de I_{cr} :

Figura 3.7: Sección transformada para el cálculo de la inercia crítica. Fuente: James k. Wing

De las ecuaciones de equilibrio y compatibilidad de deformaciones se deduce:

$$\frac{b \cdot c^2}{2} = n \cdot A_s \cdot (d - c) \tag{3.1.16}$$

3.1. Definición de Funciones de Falla.

donde *n* es la relación modular igual a E_s/E_c y *c* es la distancia del eje neutro a fibra extrema en compresión.

El momento de la sección fisurada será:

$$I_{cr} = \frac{b \cdot c^3}{3} + n \cdot A_s \cdot (d - c)^2 + (n - 1) \cdot A's \cdot (c - d')^2$$
(3.1.17)

El momento flector crítico se determina haciendo uso de la relación siguiente, que también es propuesta por el código:

$$M_{cr} = \frac{f_r \cdot I_g}{y_t} \tag{3.1.18}$$

donde f_r es la tensión de ruptura del concreto determinada como $2\sqrt{f'c}$ y y_t es la distancia desde el eje centroidal de la sección bruta de concreto, despreciando la presencia del refuerzo, a la fibra extrema en tracción.

Las deflexiones a largo plazo se incrementan rápidamente en los primeros días de aplicación y conforme transcurre el tiempo, tienden a incrementarse a un ritmo cada vez menor. Estas deformaciones son ocasionadas por la carga muerta que resiste la estructura y por aquella parte de la carga viva sostenida durante un período suficiente como para permitir el desarrollo de deflexiones considerables.

Por causa del gran número de parámetros que interactúan afectando las deflexiones a largo plazo y la incertidumbre que los acompaña, además de la poca confiabilidad de los cálculos de las deflexiones en general, bajo situaciones normales, es más práctico y también satisfactorio estimar las deflexiones a largo plazo como un factor aplicado a las deflexiones iniciales. Tal procedimiento es recomendado por el código del ACI y por la norma técnica E060 (sección 10.4.3.1). De acuerdo con estas consideraciones la deflexión adicional a largo plazo puede estimarse multiplicando las deflexiones

3.1. Definición de Funciones de Falla.

inmediatas debido a cargas sostenidas por un factor $[s/(1+50 \cdot \rho')]$. Donde este factor es considerado en el tramo medio para vigas simples y continuas, y se toma en el apoyo para vigas en voladizo ademas s es un factor que varia entre 0 y 2, dependiendo del período de tiempo durante el cual se produce la deflexion por efecto de la carga aplicada en el punto de interés[31].

$$\Delta_d = \Delta_{cp} + \Delta_{sh} = \Delta_i \cdot \frac{s}{1 + 50 \cdot \rho'} \tag{3.1.19}$$

donde Δ_d es la deflexión a largo plazo o diferida, $\rho' = A's/(bd)$ es la cuantía de refuerzo en compresión al centro de la luz para elementos continuos y simplemente apoyados, y en el apoyo para volados, y s es un factor dependiente del tiempo para cargas sostenidas, igual a: 2.0 para 5 años o más, 1.4 para 12 meses, 1.2 para 6 meses y 1.0 para 3 meses.

El método presentado para estimación de deflexiones es aproximado, y por lo tanto si éstas constituyen un problema en el diseño, es conveniente efectuar cálculos más refinados. Si con procedimientos más elaborados, aún persisten las deformaciones excesivas, se debe considerar algún procedimiento para evitarlas. Entre ellos se tiene: incrementar el peralte de la sección, incrementar la cuantía de acero en compresión o proveer al elemento de una contraflecha.

3.1.4. Análisis de Distorsiones.

Las acciones provocadas por las fueras de viento en elementos de concreto armado, en el caso de edificaciones de mediana altura no son tan considerables como los efectos de las fuerzas sísmicas, además la norma técnica E060 en su capitulo 9 Requisitos de resistencia y servicio, específicamente en el articulo 9.2.4 indica que No será necesario considerar acciones de sismo y de viento simultáneamente[3]. Por ello, en la determinación de las distorsiones en este trabajo se utilizara solamente las acciones causadas por las fuerzas sísmicas en la estructura. Para poder determinar las distorsión de una estructura es necesario conocer la fuerza que provoca este desplazamiento, en función a esto se utilizara las especificaciones la norma técnica E030 Diseño Sismorresistente para el cálculo de esta fuerza.

Se utilizará en este trabajo el Procedimiento de Análisis Sísmico Estático o de Fuerza Estáticas Equivalentes desarrollado en el artículo 4.5 de la norma E030. Como primer paso debemos de definir la zona sísmica en la que se encuentra nuestra edificación, este factor se interpreta como la aceleración máxima horizontal en suelo rígido con una probabilidad de 10% de ser excedida en 50 años. El factor Z se expresa como una fracción de la aceleración de la gravedad, estos valores se muestran en la tabla3.3:

Tabla N° 1		
FACTORES DE ZONA Z		
ZONA	Z	
4	0,45	
3	0,35	
2	0,25	
1	0,10	

Tabla 3.3: Factores de zona. Fuente: RNE-E030

Debemos definir las condiciones geotécnicas de nuestra edificaciones en función de la zona sísmica elegida, y determinar un perfil de suelo que este de acuerdo a las condiciones del terreno, como se muestra en la tabla3.4:

Tabla N° 3				
FAC'	FOR	DE SU	JELO	S
ZONA	S0	S1	S2	S 3
Z4	0,80	1,00	1,05	1,10
Z3	0,80	1,00	1,15	1,20
Z 2	0,80	1,00	1,20	1,40
Z 1	0,80	1,00	1,60	2,00

Tabla 3.4: Factores de suelo. Fuente: RNE-E030

Conociendo los valores del factor de zona Z y el factor de suelo S, determinaremos los valores de el periodo que define la plataforma del factor C o límite de la meseta, T_P y el periodo que define el inicio de la zona del factor C con desplazamiento constante, T_L . De la tabla3.5:

	Tab	la N°	4	
PERÍODOS T_P Y T_L				
	Pe	rfiL o	le su	elo
	S0	S1	S2	S 3
$T_P(\mathbf{s})$	0,3	0.4	0,6	1,0
$T_L(s)$	3,0	2,5	2,0	1,6

Tabla 3.5: Periodos T_P Y T_L . Fuente: RNE-E030

EL factor de amplificación sísmica C, esta definido en función de los valores de T_P , T_L y del periodo fundamental de la estructura T, que se determina según lo indicado en el articulo 4.5.4 de la norma E030 por la siguiente ecuación: $T = h_n/C_T$, en donde h_n representa la altura del edificio y $C_T = 35$ para pórticos de concreto armado, según las siguientes ecuaciones:

$$T < T_P; C = 2.5$$
 (3.1.20)

$$T_P < T < T_L; C = 2.5(\frac{T_P}{T})$$
 (3.1.21)

$$T > T_L; C = 2.5(\frac{T_P T_L}{T^2})$$
 (3.1.22)

Este coeficiente se interpreta como el factor de amplificación de la aceleración estructural respecto de la aceleración en el suelo.

La categoría de la edificación se define con respecto al uso que tendrá la estructura durante su vida útil, y se representa con el factor de uso U, los valores de estas categorías se muestran en la tabla3.6:

3.1. Definición de Funciones de Falla.

Tabla N° 5				
CATEGORÍA	CATEGORÍA DE LAS EDIFICACIONES Y FACTOR U			
CATEGORÍA	DESCRIPCIÓN	FACTOR U		
Δ	Al	Ver nota 1		
<i>A</i>	A2	1.5		
В		1.3		
С		1		
D		Ver nota 2		

Tabla 3.6: Categoría de las edificaciones y factor U. Fuente: RNE-E030

El coeficiente de reducción de las fuerzas sísmicas R, esta definida como el producto del coeficiente básico de reducción R_o mostrados en la tabla3.7, y los factores irregularidad I_a , I_P , mostrados en las tablas3.8, 3.9:

Tabla N° 7				
SISTEMAS ESTRUCTURALES				
Sistema	Coeficiente Básico de			
Estructural	Reducción Ro(*)			
Acero:				
Pórticos Especiales Resistentes a Momentos (SMF)	8			
Pórticos Intermedios Resistentes a Momentos (IMF)	7			
Pórticos Ordinarios Resistentes a Momentos (OMF)	6			
Pórticos Especiales Concéntricamente Arriostrados (SCBF)	8			
Pórticos Ordinarios Concéntricamente Arriostrados (OCBF)	6			
PórticosExcéntricamenteArriostrados(EBF)	8			
Concreto Armado:				
Pórticos	8			
Dual	7			
De muros estructurales	6			
Muros de ductilidad limitada	4			
Albañilería Armada o Confinada	3			
Madera (Por esfuerzos admisibles)	7			

Tabla 3.7: Coeficiente básico de reducción Ro. Fuente: RNE-E030

Tabla N° 8	
IRREGULARIDADES ESTRUCTURALES EN ALTURA	Factor de Irregularidad I_a
Irregularidad de Rigidez – Piso Blando	0.75
Irregularidades de Resistencia – Piso Débil	0.15
Irregularidad Extrema de Rigidez (Ver Tabla Nº10)	0.5
Irregularidad Extrema de Resistencia (Ver TablaN ⁰ 10)	0.0
Irregularidad de Masa o Peso	0.9
Irregularidad Geométrica Vertical	0.9
Discontinuidad en los Sistemas Resistentes	0.8
Discontinuidad extrema de los SistemasResistentes (Ver Tabla Nº 10)	0.6

Tabla 3.8: Factor de irregularidad I_a . Fuente: RNE-E030

Tabla N° 9		
IRREGULARIDADES ESTRUCTURALES EN PLANTA	Factor de Irregularidad I_P	
Irregularidad Torsional	0.75	
Irregularidad Torsional Extrema (Ver Tabla N ^o 10)	0.6	
Esquinas Entrantes	0.9	
Discontinuidad del Diafragma	0.85	
Sistemas no Paralelos	0.9	

Tabla 3.9: Factor de irregularidad Ip. Fuente: RNE-E030

Finalmente nos falta determinar el peso de la edificación, y este procedimiento se realizará de acuerdo al Articulo 4.3 Estimación del Peso(P) de la norma E030, la cual indica lo siguiente, El peso (P), se calculará adicionando a la carga permanente y total de la edificación un porcentaje de la carga viva o sobrecarga que se determinará de la siguiente manera:

- En edificaciones de las categorías A y B, se tomará el 50% de la carga viva.
- En edificaciones de la categoría C, se tomará el 25% de la carga viva.
- En depósitos, el 80% del peso total que es posible almacenar.
- En azoteas y techos en general se tomará el 25% de la carga viva.
- En estructuras de tanques, silos y estructuras similares se considerará el 100% de la carga que puede contener.

Como medida de control de las distorsiones tomaremos en cuenta las recomendaciones del Capítulo 5 Requisitos de Rigidez, Resistencia y Ductilidad, específicamente de los artículos 5.1 Determinación de Desplazamientos Laterales y 5.2 Desplazamientos Laterales Relativos Admisibles, las limitaciones a estas distorciones se muestran en la tabla3.10.

Los conceptos mencionados anteriormente nos ayudarán en la determinación de la fuerza sísmica que actuará en al estructura de análisis, el cálculo de esta fuerza se

Tabla N° 11 LÍMITES PARA LA DISTORSIÓN DEL ENTREPISO	
Concreto Armado	0.007
Acero	0.01
Albañilería	0.005
Madera	0.01
Edificios de concreto armado con muros de ductilidad limitada	0.005

Tabla 3.10: Límites para la distorsión del entrepiso. Fuente: RNE-E030

encuentra enmarcada en los comentarios de la sección 4.5 Análisis Estático o de Fuerzas Estáticas Equivalentes, específicamente en el artículo 4.5.2 Fuerza Cortante en la Base de la norma E030. En esta sección nos indica que le valor de la fuerza cortante esta dada por V = ZUCSP/R, y que el valor de C/R, no deberá de considerarse menor que $C/R \ge 0.125$.

3.1.4.1. Modelo Matemático Utilizado para Distorsiones

Para el cálculo de la fuerza lateral será necesario conocer el periodo fundamental de la estructura T, se considerara una estructura simple de un solo nivel con pórticos de concreto armado, con una altura de $h_n = 3.50m$. El valor de T será definida por:

$$T = \frac{h_n}{C_T} = \frac{3.5}{35} = 0.1 \, seg \tag{3.1.23}$$

Con el valor de T = 0.1 seg podemos determinar la ecuación de distribución de fuerzas sísmicas en la altura, que indica que para $T \leq 0.5$ seg, el valor de k sera igual a 1.0, con lo que tenemos la siguiente expresión:

$$F_{i} = \alpha_{i}V = \frac{P_{i}(h_{i})^{k}}{\sum_{j=1}^{n} P_{j}(h_{j})}V = \frac{P(h)^{1}}{\sum_{j=1}^{1} P_{j}(h_{j})}V = V$$
(3.1.24)

De la ecuación anterior podemos indicar que el valor de la fuerza lateral es igual a la magnitud de la fuerza cortante en la base. Con el mismo valor de T, también podemos determinar el valor de el factor de amplificación sísmica C, este factor esta relacionado por las restricciones dadas en las ecuaciones (3.4.1) a (3.4.3) de esta investigación.

Revisando el valor de T_P de la tabla3.5, podemos notar que este periodo varia entre 0.3 - 1.0, por lo que el valor de T = 0.1seg se encuentra por debajo del rango de valores del periodo T_P , cumpliendo con el requerimiento de la ecuación (3.4.1), de la cual obtenemos el valor de C = 2.50.

Por tener un sistema de pórticos de concreto armado revisando la tabla3.7, obtenemos que le valor del coeficiente básico de reducción R_O es igual a 8, además nuestra edificación de análisis estará libre de irregularidades en planta y altura por lo que los valores de I_a y I_p , serán 1.0 y 1.0 respectivamente, con estos valores definidos podemos calcular la magnitud del coeficiente de reducción de las fuerzas sísmicas R:

$$R = R_o I_a I_p = 8 \cdot 1 \cdot 1 = 8 \tag{3.1.25}$$

Con el valor de R, debemos de verificar que la condición $C/R \ge 0.125$ se cumpla, entonces tenemos que: C/R = 2.50/8 = 0.3125, con lo cual estamos cumpliendo lo mencionado en el articulo 4.5.2 de la norma E030.

La elección del factor de uso U esta relacionado con la categoría de la edificación, para este trabajo se definirá que nuestra estructura de análisis se encuentra en la categoría de edificaciones esenciales, con la finalidad de obtener la mayor magnitud de la fuerza lateral que sera aplicada a la edificación. De lo mencionado anteriormente y revisando la tabla3.6 tenemos que el valor de U será de 1.5.

El factor de suelo S, esta relacionado directamente con el factor de zona Z, por lo

que para nuestro análisis de confiabilidad haremos variar el valor de Z, en el cálculo del indice de confiabilidad β . En la figura 3.8 se puede visualizar la distribución de las zonas sísmicas.

Figura 3.8: Distribución de zonas sísmicas. Fuente: RNE-E030

Finalmente obtenemos el valor de la fuerza lateral que sera aplicada al edifico de análisis es este trabajo:

$$V = F = \frac{ZUCS}{R}P = \frac{1.5 \cdot 2.5}{8}ZSP = \frac{3.75}{8}ZSP$$
(3.1.26)

3.2. Descripción Estadística De Las Variables Básicas.

En cualquier circunstancia practica de la ingeniería, cada una de las variables básicas de una función de estado limite está sujeta a incertidumbres. Las incertidumbres son tomadas en cuenta en un análisis de confiabilidad estructural al describir las variables en términos estadísticos.

Para cada función de estado limite, la variabilidad en los parámetros mas sensitivos debe ser cuantificada por un análisis de datos y por la construcción de sus respectivas funciones de densidad de probabilidad. Esto se determina llevando a cabo un análisis estadístico apropiado de la información disponible, la cual incluye certificados de pruebas de laboratorio, información de obra, e inspecciones técnicas efectuadas. Los resultados de estos cálculos son funciones matemáticas que describen la probabilidad de ocurrencia de situaciones particulares. Los parámetros pertenecen a cuatro tipos de grupos: geometría, propiedades de material, cargas y resistencias.

Las variables involucradas en los modelos matemáticos anteriormente mostrados son las siguientes:

- Dimensiones de los elementos estructurales.
- Carga muerta.
- Carga viva.
- Resistencia a compresión del concreto.
- Módulo de elasticidad del concreto.
- Límite de fluencia del acero.

Las dimensiones de los elementos estructurales han sido considerados parámetros determinísticos por tener variabilidades pequeñas y porque sus efectos en el cálculo del índice de confiabilidad, demostrados en los coeficientes de sensitividad, son irrelevantes[32].

La sección 8.5.2 de la norma peruana E060, establece que el módulo de elasticidad del concreto Ec, puede tomarse igual a $15000\sqrt{f'c}$, con lo que se utiliza la distribución de la resistencia a compresión del concreto para simular la variabilidad de Ec.

3.2.1. Análisis Estadístico de la Carga Muerta.

Para fines de diseño, un valor nominal de carga muerta, corresponde a una probabilidad de ser excedida que en general varia entre 2% y 5%. De acuerdo con Meli (1976)[33] la relación entre el valor nominal de carga muerta W_n , y la media de la carga, $m_c m$, se expresa adecuadamente mediante la siguiente expresión:

$$m_{cm} = \frac{W_n}{1 + 2C\nu} \tag{3.2.1}$$

Donde Cv es el coeficiente de variación de la carga muerta que puede tomarse igual a 0.08, como valor típico. Este coeficiente de variación resulta ser muy pequeño si se compara con el coeficiente de variación de carga viva para un área dada, que toma valores entre 0.6 y 0.4, para áreas grandes[10].

Una investigación llevada a cabo por la Asociación Japonesa de Carreteras, acerca de las incertidumbres envueltas en el peso unitario del concreto reforzado concluyó que sigue una distribución normal con una media de 1.0 y un coeficiente de variación de 1.5%[34]. En este trabajo se utiliza una distribución normal con media igual a la carga por metro lineal proveniente del metrado de cargas y por seguridad, un coeficiente de variación de 8%.
3.2.1.1. Parámetros Estadísticos de la Carga Muerta.

El peso muerto de una losa aligerada, conformada por viguetas de concreto de 10cm de ancho, bloques de ladrillo de 30cm de ancho y losa superior de 5cm, es aproximadamente $300kg/m^2$. La carga por metro lineal que soportaría una vigueta de 40cm, sería 120kg/m ó 0.12ton/m. De acuerdo a las consideraciones del párrafo anterior se consideró un coeficiente de variación de 8%, la desviación estándar estimada para llevar a cabo este trabajo es de 9.6kg/m o su equivalente 0.0096ton/m. Para comodidad del lector se presenta el siguiente cuadro resumen:

Variable	Identificador, X (i)	Distribución de probabilidad	Media, $\vec{X}_i \ (kg/m^2)$	Desviación es- tándar, σ_{Xi} (kg/m^2)
$CM(m^2)$	X(1)	Normal	300	24
CM(Vigueta)	X(1)	Normal	120	9.6

Tabla 3.11: Parámetros estadísticos de la distribución de probabilidad de la carga muerta, CM, utilizados en la calibración. Fuente: Propia

3.2.2. Análisis Estadístico de la Carga Viva.

Un $paper^3$ desarrolla un formato probabilístico para la determinación de cargas vivas de diseño en edificaciones. En tal investigación, se asume que la sobrecarga, es la superposición de dos procesos de carga viva: uno sostenido y uno extraordinario. Estadísticamente, ambos componentes, son asumidas distribuidas de acuerdo a distribuciones gamma[17].

El período entre cambios de carga sostenida o entre las ocurrencias extraordinarias es asumido exponencialmente distribuido, Para obtener la distribución de la carga combinada máxima a 30 años y a 50 años, R. O. Foschi, B. R. Folz, y F. Z. Yao[32].

³The ASCE Structural Division

Una comparación de estos valores de diseño mostrados en la tabla3.12, respecto a los recomendados por otros reglamentos, hace ver la necesidad de revisar cada estudio y tratar de definir una carga de diseño tomando en cuenta una probabilidad de excedencia constante para cualquier área de proyecto.

Tipo de Uso	Lo (CV)	Tipo de Uso	Wm (CV)	Tipo de Uso	Lo (CV)	Tipo de Uso	qk (CV)
RNE-E020	(kg/m^2)	NTC-2004	(kg/m^2)	ASCE 7-10	(kg/m^2)	EUROCODIGO	(kg/m^2)
Oficinas	250	Oficinas	250	Oficinas	245	Oficinas	300
Aulas de Clase	250	Aulas	250	Salones de Clase	195	Zonas de Colegio	300
Vivienda	200	Departamentos	170	Residencial	195	Habitaciones	200
Cuartos de Hotel	200	Cuartos de Hotel	170	Cuartos Privados	195	Dormitorios Hotel	200

Tabla 3.12: Comparativa de la carga viva máxima de diseño en edificios. Fuente: RNE-E020, NTC-2004, ASCE 7-10, Eurocódigo

Para llevar a cabo el proceso de simulación de cargas vivas máximas en edificios se elaboró un programa en Matlab de acuerdo con lo descrito en la sección 2.4 del capítulo 2. En el Apéndice A se muestra el Diagrama de Flujo del programa elaborado. En este capítulo se presentan los resultados obtenidos del proceso de simulación con el método de Monte Carlo para edificios con diferentes usos. A partir de estos resultados, mediante un ajuste en la curva de comportamiento de la carga viva máxima de diseño con respecto al área, se planteó una expresión para cada uno de los edificios considerando una probabilidad de excedencia aproximadamente uniforme de 50%.

3.2.2.1. Cargas Vivas Máximas en Oficinas.

Con base en el estudio estadístico de las cargas sostenidas instantáneas descrito por Soriano y Ruiz (2001) para el caso de oficinas, la media de las cargas y la función de la varianza que define el comportamiento de las cargas son:

$$E(u) = 75.1 \ [kg/m^2] \tag{3.2.2}$$

81

$$Var(u) = \frac{4647.74}{A} + 409.29 \ [kg/m^2]^2 \tag{3.2.3}$$

Los datos de entrada requeridos para el proceso de simulación son los siguientes:

T_R (años)	Vs (1/año)	V _E (1/año)	$E(u) \ (kg/m^2)$	$\sigma_a^2 (kg/m^2)^2$	$\sigma_s^2 (kg/m^2)^2$
50	0.125	1.00	75.1	409.29	4647.74

Tabla 3.13: Parámetros de entrada para la simulación de cargas en oficinas. Fuente: Propia

En la tabla3.13, T_R representa el periodo de vida útil del edificio, V_S es el índice de cambios de carga sostenida y V_E indica la ocurrencia de eventos de carga extraordinaria. Los parámetros E(u), σ_a^2 y σ_s^2 son resultados del análisis de las cargas sostenidas existentes del edificio en cuestión(ecs. 4.2.1 y 4.2.2), indicados de acuerdo con la sección 2.4.1 del capítulo 2.

Se debe de indicar que la norma técnica E020[3] en su capitulo 10 de Reducción de Carga Viva menciona el área de influencia de $40m^2$, y utiliza una ecuación similar al del ASCE/SEI 7-10[21] que tiene una área de influencia de $37.16m^2$ tal como lo indica en la sección 4.7 Reduction in Live Loads del capítulo 4 Live Loads. Con la aplicación del programa de cómputo del Apéndice A, para 1000 simulaciones en 12 áreas de influencia se obtuvieron los siguientes resultados de carga viva máxima de diseño para edificios de oficinas. Los resultados se muestran en la tabla3.14

Donde μ_{LS} , σ_{LS} , μ_{EX} y σ_{EX} representan la media y la desviación estándar de los datos de cargas sostenidas y extraordinarias, respectivamente. Los valores de E(EX), E(LS) y E(T) indican la media de los valores máximos obtenidos dentro del proceso de simulación para las cargas extraordinarias, sostenidas y totales, respectivamente; mientras que Var(EX), Var(LS) y Var(T) representan la varianza de las mismas.

Área	μ_{LS}	σ_{LS}	μ _{EX}	σεχ	E(EX)	Var(EX)	E(LS)	Var(LS)	E(t)	Var(t)
(m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	$(kg/m^2)^2$	(kg/m^2)	$(kg/m^2)^2$	(kg/m^2)	$(kg/m^2)^2$
18.59	75.1	30.97	39.16	39.83	152.8	2319.99	99.02	1383.84	251.82	2056.56
27.89	75.1	27.86	46.86	35.58	143.63	1630.7	97.39	997.67	241.02	1534.91
40.02	75.1	25.78	45.01	29.11	120.47	971.59	95.28	810.51	215.76	926.73
55.77	75.1	24.34	41.05	23.55	101.51	787.82	97.94	731.88	199.45	750.18
74.36	75.1	23.38	37.07	19.38	86.12	597.75	98.28	610.36	184.41	579.48
92.95	75.1	22.79	33.94	16.58	73.8	444.99	99.52	520.11	173.32	457.07
111.54	75.1	22.38	31.45	14.57	65.43	394.11	102.05	570.46	167.48	487.35
130.13	75.1	22.09	29.43	13.05	60.14	328.57	100.32	491.82	160.47	450.7
148.72	75.1	21.86	27.74	11.85	52.99	260.64	101.9	457.61	154.88	370.63
185.9	75.1	21.55	25.08	10.08	47.62	254.66	101.31	404.32	148.93	388.13
223.08	75.1	21.33	23.05	8.82	41.22	166.38	102.87	428.54	144.09	358.83
260.26	75.1	21.18	21.45	7.88	38.77	191.1	101.79	378.06	140.56	351.55

3.2. Descripción Estadística De Las Variables Básicas.

Tabla 3.14: Resultados de la simulación de cargas para oficinas. Fuente: Propia

Los resultados de la simulación de las cargas con respecto a las áreas se presentan gráficamente en la figura3.9. Se puede apreciar que los valores medios obtenidos de la simulación para la carga sostenida E(LS) se mantienen aproximadamente constantes, mientras que los valores de la carga extraordinaria E(EX) disminuyen apreciablemente con el incremento del área. Debido a esto, la esperanza de la carga total E(T) presenta una disminución con el aumento en el área.

Figura 3.9: Valores medios de cargas sostenida, extraordinaria y total, para oficinas. Fuente: Propia

Los resultados de carga de diseño se presentan en la tabla3.15. Estos se ajustan a

una probabilidad de excedencia específica de 50%, siguiendo el criterio mencionado en la sección 2.4.

$Area(m^2)$	E(T)	Var(T)	α	и	P _{EXC-CTE}	Wm
18.59	251.82	2056.56	0.03	231.42	50	244.38
27.89	241.02	1534.91	0.03	223.4	50	234.59
40.02	215.76	926.73	0.04	202.06	50	210.76
55.77	199.45	750.18	0.05	187.13	50	194.95
74.36	184.41	579.48	0.05	173.58	50	180.46
92.95	173.32	457.07	0.06	163.7	50	169.81
111.54	167.48	487.35	0.06	157.55	50	163.85
130.13	160.47	450.7	0.06	150.92	50	156.98
148.72	154.88	370.63	0.07	146.22	50	151.72
185.9	148.93	388.13	0.07	140.06	50	145.69
223.08	144.09	358.83	0.07	135.57	50	140.98
260.26	140.56	351.55	0.07	132.13	50	137.48

Tabla 3.15: Carga total en oficinas con P.E. de 50%. Fuente: Propia

A partir de los resultados obtenidos en la tabla3.15, obtenemos las probabilidades de excedencia y realizamos una comparativa entre el RNE, el ASCE y una propuesta de modificatoria, como se muestra en la tabla3.16, y la figura3.10.

Figura 3.10: Carga de diseño y probabilidades de excedencia en oficinas. Fuente: Propia

PROP.	RNE	ASCE	P.EProp.	P.ERNE	P.EASCE
240.00	250.00	244.00	53.84%	43.60%	49.62%
240.00	250.00	244.00	45.54%	36.25%	41.67%
240.00	250.00	244.00	19.69%	13.67%	17.04%
194.95	216.49	210.32	49.15%	20.58%	26.93%
180.46	195.86	190.31	50.78%	27.98%	35.16%
169.81	181.78	176.66	50.00%	28.68%	36.84%
163.85	171.39	166.58	49.60%	35.33%	44.10%
156.98	163.31	158.75	50.10%	37.84%	46.48%
151.72	156.80	152.44	49.36%	37.92%	47.65%
145.69	146.84	142.78	49.05%	46.31 %	56.24%
140.98	139.50	135.66	49.58%	53.22%	62.99%
137.48	133.78	130.12	49.72%	58.96%	68.37%

3.2. Descripción Estadística De Las Variables Básicas.

Tabla 3.16: Probabilidades de excedencia en oficinas. Fuente: Propia

Con base en los resultados de carga viva máxima obtenidos para una probabilidad de excedencia de 50%(tabla3.15), se propone la siguiente intensidad de carga de diseño constante de 240 kg/m^2 , siempre que el área tributaria A sea menor que 40 m^2 .

3.2.2.2. Cargas Vivas Máximas en Aulas de Clase.

Del estudio estadístico de las cargas sostenidas instantáneas realizado por Sampayo y Ruiz (2001), la media y la función de la varianza que definen el comportamiento de las cargas son:

$$E(u) = 67.855 \ [kg/m^2] \tag{3.2.4}$$

$$Var(u) = \frac{2152.679}{A} + 31.657 \ [kg/m^2]^2 \tag{3.2.5}$$

Los datos de entrada requeridos para el proceso de simulación son los siguientes:

T_R (años)	V _S (1/año)	<i>V_E</i> (1/año)	$E(u) \ (kg/m^2)$	$\sigma_a^2 \ (kg/m^2)^2$	$\sigma_s^2 (kg/m^2)^2$
100	1.00	1.00	67.855	31.657	2152.679

Tabla 3.17: Datos de entrada en la simulación de cargas en aulas. Fuente: Propia

Área	μ _{LS}	σ_{LS}	μ _{EX}	σ _{EX}	E(EX)	Var(EX)	E(LS)	Var(LS)	E(t)	Var(t)
(m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	$(kg/m^2)^2$	(kg/m^2)	$(kg/m^2)^2$	(kg/m^2)	$(kg/m^2)^2$
18.59	67.85	16.92	39.16	39.83	143.71	1378.33	80.79	389.89	224.5	1023.35
27.89	67.85	14.19	46.86	35.58	154.72	1204.63	76.99	251.48	231.71	978.71
40.02	67.85	12. 25	45.01	29 .11	144.13	1003.54	74.85	170.42	218.97	812.03
55.77	67.85	10.8	41.05	23.55	133.37	1080.58	73.81	143.46	207.18	897.95
74.36	67.85	9.76	37.07	19.38	122.85	1084.38	73.05	108.9	195.9	933.96
92.95	67.85	9.09	33.94	16.58	112.76	938.45	72.47	88.93	185.23	836.93
111.54	67.85	8.61	31.45	14.57	105.61	977.02	72.2	88.82	177.82	846.78
130.13	67.85	8.25	29.43	13.05	101.63	1124.78	71.66	79.14	173.28	983.24
148.72	67.85	7.97	27.74	11.85	95.21	873.85	71.67	73.61	166.88	775.45
185.9	67.85	7.56	25.08	10.08	86.83	806.68	71.65	68.27	158.48	704.71
223.08	67.85	7.27	23.05	8.82	79.99	689.13	72.24	63.78	152.24	579.17
260.26	67.85	7.06	21.45	7.88	74.99	640.65	71.68	60.29	146.67	544.56

Siguiendo los procedimientos de la sección anterior obtenemos los resultados:

Tabla 3.18: Resultados de la simulación de cargas para aulas de clase. Fuente: Propia

Figura 3.11: Cargas sostenida, extraordinaria y total, para aulas. Fuente: Propia

Figura 3.12: Carga de diseño y probabilidades de excedencia en aulas. Fuente: Propia

$Area(m^2)$	E(T)	Var(T)	α	u	P _{EXC-CTE}	W _m
18.59	224.5	1023.35	0.04	210.11	50	219.25
27.89	231.71	978.71	0.04	217.64	50	226.58
40.02	218.97	812.03	0.05	206.15	50	214.3
55.77	207.18	897.95	0.04	193.7	50	202.26
74.36	195.9	933.96	0.04	182.15	50	190.88
92.95	185.23	836.93	0.04	172.22	50	180.49
111.54	177.82	846.78	0.04	164.72	50	173.04
130.13	173.28	983.24	0.04	159.18	50	168.14
148.72	166.88	775.45	0.05	154.35	50	162.31
185.9	158.48	704.71	0.05	146.53	50	154.12
223.08	152.24	579.17	0.05	141.41	50	148.29
260.26	146.67	544.56	0.05	136.17	50	142.84

Los resultados de carga de diseño se ven en la tabla3.19. Para P.E. de 50%:

Tabla 3.19: Carga total en aulas con P.E. de 50%. Fuente: Propia

A partir de los resultados en la tabla3.19, obtenemos la tabla3.20, y la figura3.12.

PROP.	RNE	ASCE	P.EProp.	P.ERNE	P.EASCE
240.00	250.00	195.00	26.10%	18.35%	83.96%
240.00	250.00	195.00	33.56%	23.97%	91.57%
240.00	250.00	195.00	16.81%	10.56%	82.56%
202.26	216.49	168.08	50.84%	33.09%	93.84%
190.88	195.86	152.09	50.60%	43.89%	96.41%
180.49	181.78	141.18	51.24%	49.45%	96.86%
173.04	171.39	133.13	51.17%	53.51%	97.09%
168.14	163.31	126.87	50.28%	57.16%	97.38%
162.31	156.80	121.82	48.91 %	58.72%	99.38%
154.12	146.84	114.11	49.55%	62.63%	99.36%
148.29	139.50	108.42	50.78%	66.73%	99.45%
142.84	133.78	103.99	51.15%	67.59%	99.32%

Tabla 3.20: Probabilidades de excedencia en aulas de clase. Fuente: Propia

De la tabla3.19, proponemos como carga de diseño 240 kg/m^2 , en áreas A menores que 40 m^2 .

3.2.2.3. Cargas Vivas Máximas en Vivienda.

Para el estudio de la carga de diseño en viviendas se tomaron los valores de media y varianza obtenidos por Guillén y Ruiz (2003), que son:

$$E(u) = 44.854 \ [kg/m^2] \tag{3.2.6}$$

$$Var(u) = \frac{5250.394}{A} + 31.098 \ [kg/m^2]^2 \tag{3.2.7}$$

Los datos de entrada requeridos para el proceso de simulación son los siguientes:

T_R (años)	V_{S} (1/año)	$V_E~(1/a$ no)	$E(u) \ (kg/m^2)$	$\sigma_a^2 (kg/m^2)^2$	$\sigma_s^2 (kg/m^2)^2$
50	0.20	1.00	44.854	31.098	5250.394

Tabla 3.21: Datos de entrada en la simulación de cargas en viviendas. Fuente: Propia

Siguiendo los procedimientos de la sección anterior obtenemos los resultados:

Área	μ_{LS}	σ_{LS}	μ _{EX}	σΕΧ	E(EX)	Var(EX)	E(LS)	Var(LS)	E(t)	Var(1)
(m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	$(kg/m^2)^2$	(kg/m^2)	$(kg/m^2)^2$	(kg/m^2)	$(kg/m^2)^2$
18.59	44.85	25.54	39.16	39.83	148.71	2084.11	64.62	1036.53	213.32	1717
27.89	44.85	21.1	46.86	35.58	144.37	1454.56	61.49	714.43	205.86	1244.56
40.02	44.85	17.88	45.01	29.11	124.17	921.56	58.74	457.18	182.91	790.58
55.77	44.85	15.43	41.05	23.55	105.98	656.28	56.89	323.13	162.86	517.96
74.36	44.85	13.65	37.07	19.38	90.49	498.12	55.56	255.72	146.05	379.99
92.95	44.85	12.46	33.94	16.58	79.61	388.97	55.73	197.85	135.33	327.44
111.54	44.85	11.6	31.45	14.57	72.17	382.87	55.33	162.01	127.5	322.95
130.13	44.85	10.95	29.43	13.05	65.88	302.66	54.82	144.86	120.7	236.68
148.72	44.85	10.43	27.74	11.85	61.01	320,98	54.35	127.01	115.36	25 2.55
185.9	44.85	9.66	25.08	10.08	53.41	218.28	53.94	101.71	107.35	171.3
223.08	44.85	9.1	23.05	8.82	47.65	181.18	53.61	84.06	101.26	136.64
260.26	44.85	8.69	21.45	7.88	44.17	238.27	53.43	74.18	97.6	196.68

Tabla 3.22: Resultados de la simulación de cargas para viviendas. Fuente: Propia

Los resultados de carga de diseño se ven en la tabla3.23. Para P.E. de 50%:

Figura 3.13: Cargas sostenida, extraordinaria y total, para viviendas. Fuente: Propia

$Area(m^2)$	E(T)	Var(T)	α	и	P _{EXC-CTE}	W _m
18.59	213.32	1717	0.03	194.68	50	206.52
27.89	205.86	1244.56	0.04	189.98	50	200.07
40.02	182.91	790.58	0.05	170.26	50	178.3
55.77	162.86	517.96	0.06	152.62	50	159.13
74.36	146.05	379.99	0.07	137.28	50	142.85
92.95	135.33	327.44	0.07	127.19	50	132.37
111.54	127.5	322.95	0.07	119.41	50	124.55
130.13	120.7	236.68	0.08	113.78	50	118.18
148.72	115.36	252.55	0.08	108.21	50	112.75
185.9	107.35	171.3	0.1	101.47	50	105.21
223.08	101.26	136.64	0.11	96	50	99.34
260.26	97.6	196.68	0.09	91.29	50	95.3

Tabla 3.23: Carga total en viviendas con P.E. de 50%. Fuente: Propia

A partir de los resultados en la tabla3.23, obtenemos la tabla3.24, y la figura3.14.

Figura 3.14: Carga de diseño y prob. de excedencia en viviendas. Fuente: Propia

PROP.	RNE	ASCE	P.EProp.	P.ERNE	P.EASCE
190.00	200.00	195.00	68.36%	57.36%	62.86%
190.00	200.00	195.00	63.18%	48.82%	55.87%
190.00	200.00	195.00	31.11%	20.23%	25.19%
159.13	173.19	168.08	49.17%	25.25%	32.67%
142.85	156.69	152.09	49.19%	22.66 %	29.85%
132.37	145.43	141.18	50.14%	24.35%	31.31 %
124.55	137.11	133.13	50.23%	25.15%	31.80%
118.18	130.65	126.87	50.50%	22.85%	29.60%
112.75	125.44	121.82	50.11%	22.27%	28.57%
105.21	117.48	114.11	49.74%	18.27%	24.61%
99.34	111.60	108.42	49.97%	16.46%	22.52%
95.30	107.03	103.99	50.19%	21.54%	27.30%

3.2. Descripción Estadística De Las Variables Básicas.

Tabla 3.24: Probabilidades de excedencia en viviendas. Fuente: Propia

De la tabla
3.23, proponemos como carga de diseño 190 kg/m^2 , en áreas A menores que 40 m^2 .

3.2.2.4. Cargas Vivas Máximas en Cuartos de Hotel.

Para el estudio de la carga de diseño en hoteles se tomaron los valores de media y varianza obtenidos por Guillén y Ruiz (2004), que son:

$$E(u) = 43.510 \left[kg/m^2 \right] \tag{3.2.8}$$

$$Var(u) = \frac{879.60}{A} + 178.70 \ [kg/m^2]^2 \tag{3.2.9}$$

Los datos de entrada requeridos para el proceso de simulación son los siguientes:

T_R (años)	V _S (1/año)	V _E (1/año)	$E(u) \ (kg/m^2)$	$\sigma_a^2 (kg/m^2)^2$	$\sigma_s^2 \ (kg/m^2)^2$
50	0.05	2.00	43.510	178.70	879.60

Tabla 3.25: Datos de entrada en la simulación de cargas en hoteles. Fuente: Propia

Área	μ _{LS}	σ _{LS}	μ_{EX}	σ _{EX}	E(EX)	Var(EX)	E(LS)	Var(LS)	E(t)	Var(t)
(m ²)	(kg/m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	(kg/m^2)	$(kg/m^2)^2$	(kg/m^2)	$(kg/m^2)^2$	(kg/m^2)	$(kg/m^2)^2$
18.59	43.51	16. 82	39.16	39.83	192.5	1845.71	47.92	306.26	240.42	1872.23
27.89	43.51	15.75	46.86	35.58	1 75.9 5	1188.75	48.41	281.61	224.37	1241.26
40.02	43.51	15.07	45.01	29.11	147.1	772.03	48.27	272.43	195.37	751.85
55.77	43.51	14.61	41.05	23.55	121.01	544.51	50.55	256.75	171.56	555.94
74.36	43.51	14.31	37.07	19.38	103.03	397.37	49.88	247.37	152.91	434.41
92.95	43.51	14.13	33.94	16.58	88.41	251.35	51.46	246.9	139.88	301.18
111.54	43.51	14	31.45	14.57	79.14	211.42	51.83	238.63	130.97	281.64
130.13	43.51	13.91	2 9.43	13.05	71.21	163.64	51.94	238.56	123.14	237.5
148.72	43.51	13.85	27.74	11.85	65. 22	140.3	53.08	218.23	118.3	221.34
185.9	43.51	13.75	25.08	10.08	56.17	112.82	53.71	238.33	109.88	226.93
223.08	43.51	13.69	23.05	8.82	49.05	93.52	54.99	211.23	104.03	188.62
260.26	43.51	13.64	21.45	7.88	44.95	91.26	54.73	191.49	99.68	168.61

Siguiendo los procedimientos de la sección anterior obtenemos los resultados:

Tabla 3.26: Resultados de la simulación de cargas para hoteles. Fuente: Propia

Figura 3.15: Cargas sostenida, extraordinaria y total, para hoteles. Fuente: Propia

Figura 3.16: Carga de diseño y prob. de excedencia en hoteles. Fuente: Propia

$Area(m^2)$	E(T)	Var(T)	α	и	P _{EXC-CTE}	Wm
18.59	240.42	1872.23	0.03	220.95	50	233.32
27.89	224.37	1241.26	0.04	208.52	50	218.58
40.02	195.37	751.85	0.05	183.03	50	190.87
55.77	171.56	555.94	0.05	160.95	50	167.69
74.36	152.91	434.41	0.06	143.53	50	149.49
92.95	139.88	301.18	0.07	132.07	50	137.03
111.54	130.97	281.64	0.08	123.42	50	128.22
130.13	123.14	237.5	0.08	116.21	50	120.62
148.72	118.3	221.34	0.09	111.61	50	115.86
185.9	109.88	226.93	0.09	103.1	50	107.41
223.08	104.03	188.62	0.09	97.85	50	101.78
260.26	99.68	168.61	0.1	93.84	50	97.55

Los resultados de carga de diseño se ven en la tabla3.27. Para P.E. de 50%:

Tabla 3.27: Carga total en hoteles con P.E. de 50%. Fuente: Propia

A partir de los resultados en la tabla3.27, obtenemos la tabla3.28, y la figura3.16.

PROP.	RNE	ASCE	P.EProp.	P.ERNE	P.EASCE
190.00	200.00	195.00	92.04%	84.66%	88.68%
190.00	200.00	195.00	87.73%	75.49%	82.05%
190.00	200.00	195.00	50.63%	34.82%	42.28%
167.69	173.19	168.08	51.03%	41.85%	50.35%
149.49	156.69	152.09	50.31%	36.50%	45.02%
137.03	145.43	141.18	50.67%	32.47%	41.05%
128.22	137.11	133.13	49.40%	28.43%	36.87%
120.62	130.65	126.87	50.48%	27.02%	34.70%
115.86	125.44	121.82	49.45%	25.03%	32.89%
107.41	117.48	114.11	49.26%	23.98%	31.01 %
101.78	111.60	108.42	50.44%	25.19%	32.05%
97.55	107.03	103.99	49.84%	23.47%	30.40%

Tabla 3.28: Probabilidades de excedencia en hoteles. Fuente: Propia

De la tabla
3.27, proponemos como carga de diseño 190 kg/m^2 , en áreas A menores que 40 m^2 .

3.2.2.5. Parámetros Estadísticos de la Carga Viva.

Del análisis anterior tomaremos como variable básica de la carga viva a la carga utilizada en el diseño de oficinas de la cual obtenemos que para nuestro caso la carga de diseño es $240 kg/m^2$ con un coeficiente de variación de 18%, estos valores fueron obtenidos por medio de una interpolación de la tabla3.13.

La carga viva para una losa aligerada, con viguetas de 40cm de ancho es, 96kg/m ó 0.096ton/m. De acuerdo a las consideraciones del párrafo anterior se consideró un coeficiente de variación de 18%, la desviación estándar estimada para llevar a cabo este trabajo es de 17.28kg/m o su equivalente 0.01728ton/m. Para comodidad del lector se presenta el siguiente cuadro resumen:

Variable	Identificador, X (i)	Distribución de probabilidad	Media, \bar{X}_i (kg/m^2)	$ \begin{array}{ c c } \hline \text{Desviación} & \text{es-} \\ \text{tándar}, & \sigma_{\chi_i} \\ (kg/m^2) \end{array} $
$CV(m^2)$	X (2)	Extrema Tipo I	240	43.20
CV(Vigueta)	X (2)	Extrema Tipo I	96	17.28

Tabla 3.29: Parámetros estadísticos de la distribución de probabilidad de la carga viva, CV, utilizados en la calibración. Fuente: Propia

3.2.3. Análisis Estadístico de la Resistencia a Compresión del Concreto.

El concreto estructural es usado primariamente para trabajar en esfuerzos de compresión. La determinación de la resistencia a compresión del concreto es muy simple y se hace generalmente por medio de una prueba de compresión, según las especificaciones de la norma técnica ASTM C39-86, y la NTP 339.034 $(2008)^4$.

⁴Método de Ensayo Normalizado para Resistencia a la Compresión de Especímenes Cilíndricos de Concreto

Para determinar la variabilidad de la resistencia a compresión y obtener una función de probabilidad que describa su comportamiento, se recopilaron 285 resultados de los reportes de ensayos de laboratorio realizados en obras estructurales en al ciudad de Ayacucho(Ver Anexo B). Estos reportes corresponden a los ensayos a compresión de testigos con 28 días de edad realizados en los años 2013 y 2016. Cuya mezcla fue diseñada para obtener una resistencia a compresión de $210 \cdot kg/cm^2$.

El análisis estadístico de los datos se efectuó en una hoja de cálculo de Microsoft Excel. El análisis realizado arroja que el valor medio de la muestra recopilada es $242.61 \cdot kg/cm^2$ con una desviación estándar de $40.31 \cdot kg/cm^2$. El coeficiente de variación respectivo es de 16.62%. El valor mínimo de resistencia a compresión de la muestra es de $150 \cdot kg/cm^2$ y el máximo de $347 \cdot kg/cm^2$. El Gráfico 3.17. muestra el histograma de frecuencias de los datos analizados. El mismo gráfico muestra la curva de porcentaje acumulado.

Se puede apreciar en la curva de porcentaje acumulado que aproximadamente el 80% de los datos está por encima de la resistencia a compresión de diseño, $210 \cdot kg/cm^2$. Esto puede explicarse en términos del factor de seguridad que se emplea para hacer los diseños de mezclas. Dadas las irregularidades en la calidad de los materiales, las condiciones de elaboración y curado del concreto, se emplea por lo general factores de seguridad en el diseño de mezclas que aumentan la resistencia a compresión requerida hasta en $85 \cdot kg/cm^2$ (RNE E060, sección 5.3.2.) cuando no se dispone de información estadística de vaciados anteriores.

Por esta razón el valor medio de la resistencia a compresión se encuentra a más de $30 \cdot kg/cm^2$ de la resistencia de diseño. Es necesario darse cuenta que la información recopilada corresponde a testigos que provienen de obras civiles en las que se ha llevado a cabo un control de calidad.

Por inspección visual del histograma se puede decir que la muestra recopilada proviene de una población que se distribuye normalmente. Para verificar esta hipótesis se realizó una prueba de bondad de ajuste. Se utilizó para tal fin, la prueba ji-cuadrada.

Este método estadístico sirve, entre otras aplicaciones, para evaluar la credibilidad de que los datos muestrales vienen de una población cuyos elementos se ajustan a un tipo de distribución de probabilidad. De hecho, cualquier prueba de bondad de ajuste compara todas las formas de dos distribuciones de probabilidad (discretas o continuas): una describe datos muestrales conocidos y la otra datos poblacionales hipotéticos. El estadístico ji-cuadrada obedece a la siguiente expresión:

$$X^{2} = \sum \frac{(f_{0} - f_{e})^{2}}{f_{e}}$$
(3.2.10)

En donde f_o es la frecuencia observada y f_e la frecuencia esperada relacionada. Esta fórmula tiene sentido intuitivo. Interesa evaluar las diferencias entre lo observado y lo esperado, así es razonable calcular la diferencia entre f_o y f_e , pero no se puede alcanzar una evaluación total con sumar estas diferencias porque dicha suma es necesariamente igual a cero. Por esta razón las desviaciones son cuadradas.

Ese procedimiento tiene la ventaja adicional de amplificar desviaciones grandes, que probablemente sean el resultado de alguna clase de dependencia entre las variables estudiadas, relativas a pequeñas desviaciones que proceden con más certeza de un error muestral. Al dividirlas entre la frecuencia esperada se convierte las desviaciones cuadradas absolutas en relativas y se pone a todos los valores sobre una base igual.

La naturaleza de la distribución muestral ji-cuadrada depende del número de grados de libertad asociado con el problema en proceso de investigación. Este número es igual al de valores de frecuencia esperada que tenemos la libertad de establecer, antes que las restricciones del problema dicten los valores restantes.

Debido a que la variable aleatoria X^2 es una suma de cuadrados y si ciertas condiciones se satisfacen, la distribución muestral del estadístico X^2 , para *n* grados de libertad, puede ser representada por la distribución de probabilidad de la suma de los cuadrados de n variables aleatorias normales estandar independientes, y luego llamarla distribución ji-cuadrada, con *n* grados de libertad. Las condiciones que se acaban de citar son: (1) una muestra los suficientemente grande de modo que cada frecuencia esperada sea igual a cinco o mas, y (2) una población subyacente que sea normalmente distribuida. Las medidas de resumen de la distribución ji-cuadrada son las siguientes:

$$\mu_{\chi^2} = E(\chi^2) = gl \tag{3.2.11}$$

$$\sigma^{2}_{\chi^{2}} = VAR\left(\chi^{2}\right) = 2 \cdot gl \qquad (3.2.12)$$

$$\sigma_{\chi^2} = DE\left(\chi^2\right) = \sqrt{2 \cdot gl} \tag{3.2.13}$$

En donde μ_{χ^2} es la media aritmética o valor esperado, $\sigma^2_{\chi^2}$ es la varianza y σ_{χ^2} la desviación estándar de la distribución ji-cuadrada, en tanto que gl son los grados de libertad asociados.

La prueba ji-cuadrada realizada a la muestra se efectúa para un nivel de significancia α determinado, por ejemplo $\alpha = 0.05$.

Esto implica que, debido al error muestral, sólo 5% de los valores χ^2 que se calculen al tomar muestras repetidas de una población para la que la hipótesis de independencia fuera verdadera excedería el valor crítico correspondiente a $\alpha = 0.05$. La ejecución de la prueba se muestra en la Tabla3.30:

	Tabla 3.30: Prueba de bondad de ajuste
	a la m
	uestra
	recop
	oilada,
	f'c.
	Fuente
	3: Pr
97	opia

$f'c(kg/cm^2)$	fo	fo	fo	fo/N	$z=(f'c-\mu)/\sigma$	F=Dist.N(z)	$Fx = Fi - F_{i-1}$	Fe=Fx*N	fo - fe	x2=
Alcanzada	Frecuencia	Frecuencia	Frecuencia	F. Observada	Var. Aleatoria	Distribucion	Distribucion	Frecuencia	F. Observ.	(fo-fe)2/fe
Intervalos	Observada	%	% Acum.	N° de Datos	Normal Estan.	Normal Acm.	Normal	Esperada	F. Esperd.	Chi-Cuadrado
170	12	4.21%	4.21%	0.042105	-1.801170	0.035838	0.035838	10.21	1.79	0.31
190	19	6.67%	10.88%	0.066667	-1.305028	0.095942	0.060104	17.13	1.87	0.20
200	11	3.86%	14.74%	0.038596	-1.056957	0.145266	0.049324	14.06	-3.06	0.66
210	18	6.32%	21.05%	0.063158	-0.808886	0.209290	0.064025	18.25	-0.25	0.00
220	23	8.07%	29.12%	0.080702	-0.560815	().287462	0.078172	22.28	0.72	0.02
230	26	9.12%	38.25 %	0.091228	-0.312744	0.377238	0.089776	25.59	0.41	0.01
240	34	11.93%	50.18%	0.119298	-0.064673	0.474217	0.096980	27.64	6.36	1.46
250	21	7.37%	57.54%	0.073684	0.183399	0.572757	0.098540	28.08	-7.08	1.79
260	27	9.47%	67.02%	0.094737	0.431470	0.666937	0.094179	26.84	0.16	0.00
270	24	8.42%	75.44%	0.084211	0.679541	0.751602	0.084666	24.13	-0.13	0.00
280	19	6.67%	82.11%	0.066667	0.927612	0.823196	0.071593	20.40	-1.40	0.10
290	16	5.61%	87.72%	0.056140	1.175683	0.880139	0.056944	16.23	-0.23	0.00
300	10	3.51%	91. 23 %	0.035088	1.423754	0.922741	0.042602	12.14	-2.14	0.38
310	11	3.86%	95.09%	0.038596	1.671825	0.952721	0.029979	8.54	2 .46	0.71
320	5	1.75%	96.84%	0.017544	1.919896	0.972564	0.019844	5.66	-0.66	0.08
330	5	1.75%	98.60%	0.017544	2.167967	0.984919	0.012355	3.52	1.48	0.62
350	4	1.40%	100.00%	0.014035	2.664109	0.996140	0.011221	3.20	0.80	0.20

N° Datos=	285
Media $(\mu) =$	242.61
Des. Est. $(\sigma)=$	40.31

Max=	347
Min=	150
α=	0.05

N° Clases=	17.00
Param. Est.=	2.00
gl=	14.00

Σ=	6.55
Limite x2=	23.685
Verif.=	Ok
,	

La hipótesis formulada corresponde a que la resistencia a compresión del concreto se distribuye normalmente con una media de $242.61 \cdot kg/cm^2$ y una desviación estándar de $40.31 \cdot kg/cm^2$.

La sumatoria de los χ^2 es igual a 6.55, y para un nivel de significancia de $\alpha = 0.05$, y 14 grados de libertad se permite una sumatoria de χ^2 de 23.685 con lo que se acepta la hipótesis de que la muestra recopilada pertenece a una población que se distribuye normalmente, con una media de 242.61 $\cdot kg/cm^2$ y una desviación estándar de 40.31 $\cdot kg/cm^2$.

Figura 3.17: Histograma de frecuencias y curva de porcentaje acumulado de la resistencia a compresión del concreto, f'c. Fuente: Propia

En la figura3.17, se muestra la superposición de la curva paramétrica normal con media 242.61 y desviación estándar 40.31 con el histograma de frecuencias.

3.2.3.1. Parámetros Estadísticos de la Resistencia a Compresión del Concreto.

La tabla3.31 siguiente muestra un resumen de los parámetros estadísticos utilizados para describir el comportamiento de la resistencia a compresión en el trabajo de calibración.

Variable	Identificador, $X(i)$	Distribución o probabilidad	de	Media, \bar{X}_i (kg/cm ²)	Desviación tándar, (kg/cm ²)	es- σ _{Xi}
f'c	X (3)	Normal		242.61	40.31	

Tabla 3.31: Parámetros estadísticos de la distribución de probabilidad de la resistencia a compresión del concreto, f'c, utilizados en la calibración. Fuente: Propia

3.2.4. Análisis Estadístico del Esfuerzo de Fluencia del Acero.

El acero es una aleación de diversos elementos, ente ellos: carbono, manganeso, silicio, cromo, níquel y vanadio. El carbono es el más importante y el que determina sus propiedades mecánicas. A mayor contenido de carbono, la dureza, la resistencia a la tracción y el límite elástico aumentan[35].

El acero para ser utilizado se fabrica bajo las normas ASTM A 615 96a, ASTM A 616 96a, ASTM A 617 96a, y ASTM A 705 96b. Existen tres calidades distintas de acero corrugado: grado 40, grado 60 y grado 75 aunque en el Perú solo se utiliza el segundo. El acero grado 60 tiene un esfuerzo de fluencia de $4200 \cdot kg/cm^2$ y una resistencia mínima a la rotura de $6300 \cdot kg/cm^2$.

El código del ACI establece que para aceros con esfuerzo de fluencia mayor que $4200 \cdot kg/cm^2$, se considerará como esfuerzo de fluencia, el esfuerzo correspondiente a

una deformación de 0.35%. Este esfuerzo no deberá ser superior a los $5600 \cdot kg/cm^2$ (ACI-3.5.3.2, 9.4).

Para determinar la variabilidad del límite de fluencia del acero y determinar una función de probabilidad que se ajuste a su comportamiento, se recopiló 77 resultados de los reportes de ensayos efectuados en el Laboratorio de Metalotecnia de la Universidad de Piura entre los años 1999-2001.

Estos reportes corresponden a ensayos de tracción de barras de acero de construcción de grado 60 fabricados por Aceros Arequipa y SIDERPERU. La Figura3.18, muestra el histograma de frecuencias de los datos analizados. El mismo gráfico muestra también la curva de porcentaje acumulado[2].

No se ha discriminado los datos según fabricante debido a que análisis exclusivos determinaron que el valor medio del límite de fluencia de ambas marcas son muy cercanos, al igual que sus desviaciones estándar y el rango de las muestras. Aunque estas coincidencias pueden deberse a errores muestrales, se ha convenido por facilidad unir en un solo análisis la muestra.

El análisis estadístico de los datos se llevó a cabo en una hoja de Microsoft Excel. Los resultados del análisis son los siguientes: valor medio del límite de fluencia, $4945.93 \cdot kg/cm^2$; desviación estándar, $277.91 \cdot kg/cm^2$; coeficiente de variación, 5.62%; valor mínimo de la muestra, $4317 \cdot kg/cm^2$; máximo, $5704 \cdot kg/cm^2$.

Como puede apreciarse en el gráfico no hubo un solo dato muestral cuyo valor estuviera por debajo de $4300 \cdot kg/cm^2$. El valor medio obtenido es muy cercano a los $5000 \cdot kg/cm^2$ con lo que se tiene que hay una diferencia de casi $800 \cdot kg/cm^2$ entre la media y el valor teórico utilizado en los diseños de $4200 \cdot kg/cm^2$.

Esto conduce a un aumento significativo de la resistencia de los elementos estructurales, pero también estos altos esfuerzos de fluencia podrían conducir a fallas frágiles de los elementos estructurales, concebidos para fallar de forma dúctil. De acuerdo al gráfico, no habrían probabilidades de colapso dúctil, dados los elevados valores del esfuerzo de fluencia.

De igual forma que para la resistencia a compresión del concreto, al efectuarse inspección visual del histograma de frecuencias se puede determinar que la muestra recopilada proviene de una población que sigue una distribución normal. Para probar esta hipótesis se llevó a cabo la prueba de bondad de ajuste ji-cuadrada, cuyas características y significado ya fueron expuestas en la sección anterior.

La hipótesis formulada corresponde a que el esfuerzo de fluencia del acero se distribuye normalmente con una media de $4945.93 \cdot kg/cm^2$ y una desviación estándar de $277.91 \cdot kg/cm^2$.

La sumatoria de los χ^2 es igual a 4.22, para un nivel de significancia de $\alpha = 0.05$, y 6 grados de libertad se permite una sumatoria de χ^2 de 12.592 con lo que se acepta la hipótesis de que la muestra recopilada pertenece a una población que se distribuye normalmente, con una media de 4945.93 $\cdot kg/cm^2$ y una desviación estándar de 277.91 $\cdot kg/cm^2$.

En la Figura3.18, también se muestra la superposición de la curva normal ajustada con media $4945.93 \cdot kg/cm^2$ y desviación estándar $277.91 \cdot kg/cm^2$ y el histograma de frecuencias de la muestra recopilada.

fv (kg/cm^2)	fo	fo	fo	fo/N	$z = (fy - \mu)/\sigma$	F=Dist.N(z)	$Fx = Fi - F_{i-1}$	Fe=Fx*N	fo - fe	x2=
Alcanzada	Frecuencia	Frecuencia	Frecuencia	F. Observada	Var. Aleatoria	Distribucion	Distribucion	Frecuencia	F. Observ.	(fo-fe)2/fe
Intervalos	Observada	%	% Acum.	N° de Datos	Normal Estan.	Normal Acm.	Normal	Esperada	F. Esperd.	Chi-Cuadrado
4550	6	7.79%	7.79%	0.077922	-1.424670	0.077126	0.077126	5.94	0.06	0.00
4650	5	6.49%	14.29 %	0.064935	-1.064841	0.143474	0.066348	5.11	-0.11	0.00
4750	7	9.09%	23.38%	0.090909	-0.705012	0.240401	0.096927	7.46	-0.46	0.03
4850	9	11.69%	35.06%	0.116883	-0.345184	0.364978	0.124577	9.59	-0.59	0.04
5000	22	28.57%	63.64%	0.285714	0.194559	0.577131	0.212153	16.34	5.66	1.96
5100	9	11.69%	75.32%	0.116883	0.554388	0.710343	0.133212	10.26	-1.26	0.15
5200	7	9.09%	84.42 %	0.090909	0.914217	0.819699	0.109355	8.42	-1.42	0.24
5300	3	3.90%	88.31%	0.038961	1.274046	0.898676	0.078978	6.08	-3.08	1.56
5750	9	11.69%	100.00%	0.116883	2.893275	0.998094	0.099417	7.66	1.34	0.24
				<u> </u>					······································	<u> </u>
N° Datos=	77		Max=	5704		N° Clases=	9.00		Σ =	4.22
Media $(\mu) =$	4945.93		Min=	4317		Param. Est.=	2.00		Limite x2=	12.592
Des. Est. $(\sigma) =$	277.91	1	α =	0.05		gl=	6.00		Verif.=	Ok

102

3.2. Descripción Estadística De Las Variables Básicas.

Figura 3.18: Histograma de frecuencias y curva de porcentaje acumulado del esfuerzo de fluencia del acero, f_y . Fuente: Propia

3.2.4.1. Parámetros Estadísticos del Esfuerzo de Fluencia del Acero.

La Tabla 3.33 muestra un resumen de los parámetros estadísticos utilizados para describir el comportamiento del esfuerzo de fluencia del acero en el trabajo de calibración.

Variable	Identificador, $X(i)$	Distribución de probabilidad	Media, \bar{X}_i (kg/cm ²)	Desviación es- tándar, σ_{X_1} (kg/cm^2)	-
f _y	X (4)	Normal	4945.93	277.91	

Tabla 3.33: Parámetros estadísticos de la distribución de probabilidad del esfuerzo de fluencia del acero, f_y , utilizados en la calibración. Fuente: Propia

3.2.5. Resumen de las Variables Básicas.

A continuación se presenta una tabla3.34 con el resumen de los parámetros que describen las funciones de probabilidad de las variables básicas involucradas en el trabajo de calibración.

Variable	Identificador, $X(i)$	Distribución de probabilidad	Media, \bar{X}_i (kg/m ²)	Desviación tándar, (kg/m ²)	es- σ _{Xi}
$CM(kg/m^2)$	X(1)	Normal	300.00	24.00	
$CV(kg/m^2)$.	X (2)	Extrema Tipo I	240.00	43.20	
$f'c(kg/cm^2)$	X (3)	Normal	242.61	40.31	
$f_y(kg/cm^2)$	X (4)	Normal	4945.93	277.91	

Tabla 3.34: Resumen de los parámetros estadísticos que describen las funciones de probabilidad de las variables básicas involucradas en el trabajo de calibración. Fuente: Propia

La tabla3.35 siguiente muestra los parámetros estadísticos en términos de Q/Q_n que describen las funciones de probabilidad de las variables básicas involucradas.

Variable	Identificador, X (i)	Distribución de probabilidad	Media, Q/Q_n)	COV)
$CM(kg/m^2)$	X (1)	Normal	1.00	8.00%
$CV(kg/m^2)$	X (2)	Extrema Tipo I	0.96	18.00%
$f'c(kg/cm^2)$	X (3)	Normal	1.16	16.62%
$f_y(kg/cm^2)$	X (4)	Normal	1.18	5.62%

Tabla 3.35: Parámetros estadísticos en términos de Q/Q_n de las variables básicas. Fuente: Propia

Capítulo 4

Análisis y Discución de Resultados.

4.1. Indices de Confiabilidad.

4.1.1. Combinaciones de Diseño De La Norma Técnica E060.

El capítulo 9 del RNE E060, denominado "Requisitos de Resistencia y de Servicio", establece en la sección 9.2.1 al 9.2.3 los requisitos de resistencia para soportar carga muerta (CM), viva (CV) y de sismo (CS) que todo elemento debe cumplir:

$$U = 1.4CM + 1.7CV \tag{4.1.1}$$

$$U = 1.25(CM + CV) + CS \tag{4.1.2}$$

$$U = 0.9CM + CS \tag{4.1.3}$$

La sección 9.1.1 indica que "Las estructuras y los elementos estructurales deberán diseñarse para obtener en todas sus secciones, resistencias de diseño, por lo menos iguales a las resistencias requeridas, calculadas para las cargas amplificadas en las combinaciones que se estipulan en la norma". La sección 9.1.2 agrega que "Las es-

4.1. Indices de Confiabilidad.

tructuras y los elementos estructurales también, deberán cumplir con todos los demás requisitos de esta norma, para garantizar un comportamiento adecuado bajo cargas de servicio". Los otros requisitos están referidos al control de las deflexiones en servicio. La sección 9.3.1 dice que "la resistencia de diseño proporcionada por un elemento, sus conexiones con otros elementos, así como sus secciones transversales en términos de flexión, carga axial, cortante y torsión deberá tomarse como la resistencia nominal (resistencia del refuerzo realmente colocado), calculada de acuerdo con los requisitos y suposiciones de la norma, multiplicada por los factor $\boldsymbol{\varphi}$ de reducción de resistencia".

4.1.2. Consideraciones en el Análisis de Confiabilidad.

La evaluación de la confiabilidad se hace para las resistencias nominales y las cargas actuantes reales (sin amplificar), pero incluyendo las incertidumbres envueltas en el problema de diseño. De este modo, se evalúa la posibilidad de que las cargas reales sobrepasen la resistencia real (diseñada para cargas de diseño amplificadas) y se obtiene el índice de confiabilidad. Para calibrar el código, se hace el mismo procedimiento para otros factores de amplificación de cargas y reducción de resistencias, convenientemente elegidos. De esta manera se puede seleccionar la combinación de factores que se ajuste a los estándares de confiabilidad.

Es necesario acotar que la probabilidad de falla de una estructura diseñada con una combinación de factores de carga determinados, depende del modelo matemático utilizado para describir el comportamiento del elemento estructural frente a determinado tipo de solicitación (por ejemplo, flexión). Para los trabajos de calibración de códigos se emplean estructuras sencillas, tales como vigas simplemente apoyadas para evaluar flexión, losas para evaluar deflexiones, columnas para evaluar deformaciones laterales por efectos sísmicos, etc.

4.1.3. Factores de Amplificación de Carga y Reducción de Resistencia en el Análisis.

Se consideró 04 casos para 04 combinaciones de carga agrupadas en 02 tipos de estados límites, en el análisis del índice β como se muestra en la tabla4.1. Se han tomado como indices objetivos β_t a los valores propuestos por Ellingwood, de β_t iguales a 3.0 para carga permanente, 2.75 para sobrecarga viva, 2.5 para carga de viento y 1.75 para carga sísmica[36].

E.L. Resistencia y	Servicio – ELRS	Estado límite de Evento Extremo - ELEE			
COMBINACIÓN 01	COMBINACIÓN 02	COMBINACIÓN 03	COMBINACIÓN 04		
U = 1.4D + 1.7L	U = 1.6D	$U = 1.25D + 1.25L \pm E$	$U = D \pm E$		
U = 1.3D + 1.7L	U = 1.5D	$U = 1.25D + 1.15L \pm E$	$U = 0.95D \pm E$		
U = 1.3D + 1.6L	U = 1.4D	$U = 1.2D + 1.1L \pm E$	$U = 0.9D \pm E$		
U = 1.2D + 1.6L	U = 1.3D	$U = 1.2D + L \pm E$	$U = 0.85D \pm E$		

Tabla 4.1: Combinaciones de diseño a ser analizadas. Fuente: Propia.

Los factores de reducción de resistencia, φ , varían desde 0.6 hasta 1.0, en intervalos de 0.1. Para el caso de la fuerza cortante se ha considerando un punto adicional, con $\varphi = 0.85$.

4.1.4. Análisis de Confiabilidad de la COMB. 01 - ELRS.

4.1.4.1. Análisis de Confiabilidad en Flexión - COMB. 01.

Para la calibración del código en flexión se utilizó la estructura mostrada en la Figura4.1:

Figura 4.1: Estructura empleada en el análisis a flexión. Fuente: Propia.

La sección transversal utilizada en el trabajo de calibración es aquella en la que sucede el momento máximo. El momento máximo para una carga de $1 \cdot ton/m$ es igual a $1.76 \cdot ton.m$.

Se ha calculado la cuantía de acero requerida, ρ , de la sección de máximo momento positivo de acuerdo al modelo matemático presentado en la sección 3.1.1 para el análisis de la flexión. Las resistencias requeridas corresponden a la primera combinación de carga (CM + CV) amplificada según lo especificado en la sección 5.3. Los parámetros de diseño se muestran en la tabla4.2:

Parametro	CM	CV	d	b	f'c	fy
Valor	120 ·kg/m	96 -kg/m	0.17 ·m	0.40 ·m	$210 \cdot kg/cm^2$	$4200 \cdot kg/cm^2$

Tabla 4.2: Parámetros para el diseño en flexión. Fuente: Propia.

La Tabla 4.3 muestra la cuantía de acero para los requisitos de resistencia de la sección 5.3.

Mu + (ton.m)	Cuantia de acero ρ , para distintas combinaciones de carga						
φ	$\alpha_D=1.4; \alpha_L=1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D=1.3; \alpha_L=1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$			
1.00	0.001216565	0.001171860	0.001136130	0.001091512			
0.90	0.001353966	0.001304130	0.001264305	0.001214577			
0.80	0.001526368	0.001470070	0.001425088	0.001368929			
0.70	0.001749102	0.001684416	0.001632741	0.001568239			
0.60	0.002047994	0.001971979	0.001911269	0.001835510			

Tabla 4.3: Cuantías de acero requeridas según requisitos de resistencia. Fuente: Propia.

La capacidad de la sección es igual al momento nominal Mn dado por:

$$Mn = \rho \cdot f_y \cdot b \cdot d^2 \cdot \left(1 - 0.59 \cdot \rho \cdot \frac{f_y}{f'_c}\right)$$
(4.1.4)

108

4.1. Indices de Confiabilidad.

La demanda es el momento actuante Ma dado por:

$$Ma = 1.76 \cdot (CM + CV) \tag{4.1.5}$$

donde CM y CV son las cargas por metro lineal y el factor 1.76 corresponde al momento máximo positivo producido por una carga unitaria de 1ton/m. La función de falla será:

$$G = Mn - Ma \tag{4.1.6}$$

$$G = \rho \cdot X(4) \cdot b \cdot d^{2} \cdot \left(1 - 0.59 \cdot \rho \cdot \frac{X(4)}{X(3)}\right) - 1.76 \cdot (X(1) + X(2))$$
(4.1.7)

Con la función de falla, procedemos a realizar el calculo del indice confiabilidad para este estado. En el Anexo E se muestra el análisis para $\alpha_D = 1.4$, $\alpha_L = 1.7$ y $\varphi = 0.9$, con una cuantía requerida de 0,001353966, estos análisis se realizaron mediante un programa en *MatLab*, en este anexo se muestran el uso del programa, la entrada de datos y los resultados del análisis realizado para el mismo caso.

Se efectuó un análisis FORM y SORM para cada caso. Los resultados del análisis de confiabilidad se muestran en la tabla4.4.

Las Figuras 4.2 y 4.3 muestran la variación de los índices de confiabilidad y sus respectivas probabilidades de falla mostrados en la tabla4.4, para los métodos *FORM* y *SORM*.

Como puede observarse mientras mayor es el factor de resistencia, menor es el índice de confiabilidad y mayor la probabilidad de falla relacionada. Además puede verificarse que la probabilidad de falla aumenta considerablemente mientras menores son los factores de amplificación de cargas y mayor es el factor de resistencia, φ .

4.1. Indices de Confiabilidad.

		$\alpha_D = 1.4; \alpha_L$	= 1.7	
¢	β FORM	Pf FORM	β SORM	Pf SORM
1.00	4.369370432	6.230262E-06	4.350897296	6.779078E-06
0.90	4.967100519	3.398068E-07	4.945481561	3.797793E-07
0.80	5.624339493	9.310955E-09	5.698875819	6.030001E-09
0.70	6.134533488	7.971128E-10	6.227537256	2.369120E-10
0.60	6.657876303	2.409316E-08	6.688976858	3.542996E-08
		$\alpha_D = 1.3; \alpha_L$	= 1.7	· · · · · · · · · · · · · · · · · · ·
φ	β FORM	Pf FORM	β SORM	Pf SORM
1.00	4.156185008	1.618029E-05	4.136303429	1.764727E-05
0.90	4.759175544	9.719266E-07	4.74249267	1.055522E-06
0.80	5.419143716	2.994258E-08	5.365503836	4.036178E-08
0.70	5.988479988	2.027036E-08	5.911806065	2.696077E-07
0.60	6.444332867	1.116957E-10	6.469586469	1.282626E-11
		$\alpha_D = 1.3; \alpha_L$	= 1.6	
¢	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.977755925	3.478436E-05	3.956565837	3.801747E-05
0.90	4.586119518	2.257801E-06	4.567700708	2.465517E-06
0.80	5.248933732	7.649105E-08	5.207178779	9.586667E-08
0.70	5.831046376	1.042476E-09	5.781144679	3.611048E-10
0.60	6.223123543	2.887891E-09	6.271495793	2.159403E-09
		$\alpha_D = 1.2; \alpha_L$	= 1.6	
ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.743494471	9.073930E-05	3.720729253	9.932416E-05
0.90	4.360109923	6.499856E-06	4.341946322	7.061302E-06
0.80	5.027780408	2.480948E-07	5.003966109	2.808132E-07
0.70	5.671779326	3.921940E-09	5.600368763	4.723530E-09

Tabla 4.4: Indice de confiabilidad y probabilidad de falla para flexión. Fuente: Propia.

Figura 4.2: Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - flexión. Fuente: Propia.

Para un factor de resistencia igual a 0.9 como es usual en flexión y para los casos en

Figura 4.3: Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - flexión. Fuente: Propia.

los que $\alpha_D = 1.4$ y $\alpha_L = 1.7$; y, $\alpha_D = 1.3$ y $\alpha_L = 1.6$ la probabilidad de falla obtenida es muy cercana y se encuentra en el orden de 2.26×10^{-6} tal como se aprecia en la Figura 4.3. Para estos casos, los β respectivos son 4.97 y 4.59. Sin embargo la probabilidad de falla aumenta hasta el orden de 6.5×10^{-6} para $\alpha_D = 1.2$ y $\alpha_L = 1.6$ para el mismo factor de resistencia. El índice de confiabilidad obtenido para este caso es igual 4.36.

Hasta este punto podemos indicar que el indice de confiabilidad de nuestra norma se encuentra muy por encima de lo recomendado por las normas internacionales, como ejemplo se puede mencionar la norma LRFD y las investigaciones de Ellingwood los cuales indica un β del orden 3.00, por ello tomando en consideración solo el diseño por flexión podemos recomendar que la combinación de diseño $\alpha_D = 1.3$ y $\alpha_L = 1.6$, es adecuada.

Sin embargo, los elementos estructurales no están sujetos solamente a flexión, sino también a fuerza cortante. Por ello es conveniente, estudiar la respuesta del diseño por corte y su probabilidad de falla, para unificar criterios en la selección de los factores más adecuados.

4.1.4.2. Análisis de Confiabilidad para Cortante - COMB. 01.

En el análisis de la confiabilidad para fuerza cortante, se empleó la estructura mostrada en la Figura 4.1. La diferencia radica, en que el parámetro que define el diseño es el producto $b_w \cdot d$.

La sección transversal utilizada en el trabajo de calibración es aquella situada a d de la cara del elemento del tramo exterior. En este caso, el valor de la fuerza cortante actuante para una carga distribuida uniforme de 1 ton/ml es igual a 2.92 ton.

Se calculó el producto $b_w \cdot d$ requerido de la sección descrita en el párrafo anterior, según el modelo matemático explicado en la sección 3.2.1. Las resistencias requeridas corresponden a la primera combinación de carga CM + CV amplificada según lo especificado en la sección 5.3. Los parámetros de diseño son los mostrados en la Tabla 4.5.

Parametro	CM	CV	d	b	f'c
Valor	120 -kg/m	96 ·kg/m	0.17 ·m	0.10 ·m	$210 \ kg/cm^2$

Tabla 4.5: Parámetros de diseño para fuerza cortante. Fuente: Propia.

En la Tabla4.6 se muestra los valores del producto $b_w \cdot d$ de cuerdo a las combinaciones de diseño y los coeficientes mencionados en la sección 5.3.

Vu-(ton)	Valor de $d * b_w(cm^2)$, para distintas combinaciones de carga						
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3, \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$			
1.00	127.4272	122.8103	119.1168	114.4998			
0.95	134.1339	129.2740	125.3861	120.5262			
0.90	141.5858	136.4559	132.3520	127.2220			
0.85	149.9144	144.4827	140.1374	134.7057			
0.80	159.2841	153.5129	148.8960	143.1248			

Tabla 4.6: Producto $d * b_w$ requeridas según requisitos de resistencia. Fuente: Propia.

La capacidad resistente del concreto al cortante en la sección es igual al corte nominal Vn:

$$Vn = Vc = 0.53b_w d\sqrt{f'c} \tag{4.1.8}$$

La demanda de esta sección esta dado por el corte Va a una distancia d del apoyo, generado por la carga unitaria mencionada en la sección 5.4:

$$Va = 2.92(CM + CV) \tag{4.1.9}$$

Con las ecuaciones anteriores podemos definir la función de falla por corte:

$$G = 0.53b_w d\sqrt{X(3)} - 2.92(X(1) + X(2))$$
(4.1.10)

En el Anexo E se muestra el análisis para $\alpha_D = 1.4$, $\alpha_L = 1.7$ y $\varphi = 0.85$, con un valor de $d * b_w$ de 149.9144.

Se efectuó un análisis FORM y SORM para cada caso. Los resultados del análisis de confiabilidad se muestran en la tabla4.7.

Las Figuras 4.4 y 4.5 muestran la variación de los índices de confiabilidad y sus respectivas probabilidades de falla mostrados en la tabla4.7, para los métodos FORM y SORM.

Como puede observarse mientras mayor es el factor de resistencia, menor es el índice de confiabilidad y mayor la probabilidad de falla relacionada. Además puede verificarse que la probabilidad de falla aumenta considerablemente mientras menores son los factores de amplificación de cargas y mayor es el factor de resistencia, φ .

4.1. Indices de Confiabilidad.

$\alpha_D = 1.4; \alpha_L = 1.7$				
ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.880929402	5.2029E-05	3.729034179	9.6108E-05
0.95	4.112646457	1.9557E-05	3.947812947	3.9434E-05
0.90	4.337895302	7.1927E-06	4.164506481	1.5601E-05
0.85	4.549478002	2.6890E-06	4.392330775	5.6071E-06
0.80	4.742195966	1.0571E-06	4.622648194	1.8944E-06
$\alpha_D = 1.3; \alpha_L = 1.7$				
ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.705111825	1.0565E-04	3.561605822	1.8430E-04
0.95	3.947498134	3.9486E-05	3.79196366	7.4730E-05
0.90	4.186462604	1.4167E-05	4.01770738	2.9384E-05
0.85	4.416221217	5.0221E-06	4.244576099	1.0950E-05
0.80	4.628610706	1.8406E-06	4.48600782	3.6285E-06
$\alpha_D = 1.3; \alpha_L = 1.6$				
ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.55443817	1.8939E-04	3.416804083	3.1680E-04
0.95	3.804876252	7.0938E-05	3.656841498	1.2767E-04
0.90	4.053771866	2.5199E-05	3.892179369	4.9674E-05
0.85	4.296764357	8.6655E-06	4.123934442	1.8623E-05
0.80	4.525792258	3.0085E-06	4.365096554	6.3533E-06
		$\alpha_D = 1.2; \alpha_L$	= 1.6	L
φ	β FORM	$\alpha_D = 1.2; \alpha_L$ Pf FORM	= 1.6 β SORM	Pf SORM
\$ 1.00	β FORM 3.352785695	$\alpha_D = 1.2; \alpha_L$ Pf FORM $4.0001\text{E-}04$	= 1.6 β SORM 3.221036579	Pf SORM 6.3864E-04
¢ 1.00 0.95	β FORM 3.352785695 3.613016601	$\alpha_D = 1.2; \alpha_L$ Pf FORM 4.0001E-04 1.5133E-04	= 1.6 β SORM 3.221036579 3.473245799	Pf SORM 6.3864E-04 2.5710E-04
φ 1.00 0.95 0.90	β FORM 3.352785695 3.613016601 3.873401837	$\alpha_D = 1.2; \alpha_L$ Pf FORM 4.0001E-04 1.5133E-04 5.3663E-05	= 1.6 \$\beta\$ SORM 3.221036579 3.473245799 3.721905528	Pf SORM 6.3864E-04 2.5710E-04 9.8863E-05
¢ 1.00 0.95 0.90 0.85	β FORM 3.352785695 3.613016601 3.873401837 4.1311287		= 1.6 \$\overline{\beta} SORM\$ 3.221036579\$ 3.473245799\$ 3.721905528\$ 3.965209387\$	Pf SORM 6.3864E-04 2.5710E-04 9.8863E-05 3.6666E-05

Tabla 4.7: Indice de confiabilidad y probabilidad de falla por Corte. Fuente: Propia.

Figura 4.4: Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - Corte. Fuente: Propia.

Para un factor de resistencia igual a 0.85 como es usual en corte y para los casos en los que $\alpha_D = 1.4$ y $\alpha_L = 1.7$; y, $\alpha_D = 1.3$ y $\alpha_L = 1.6$ la probabilidad de falla obtenida

Figura 4.5: Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - Corte. Fuente: Propia.

es muy cercana y se encuentra en el orden de 8.66×10^{-6} tal como se aprecia en la Figura 4.5. Para estos casos, los β respectivos son 4.55 y 4.30. Sin embargo la probabilidad de falla aumenta hasta el orden de 1.80×10^{-5} para $\alpha_D = 1.2$ y $\alpha_L = 1.6$ para el mismo factor de resistencia. El índice de confiabilidad obtenido para este caso es igual 4.13.

De los calculo anteriores vemos que el indice de confiabilidad de nuestra norma se encuentra muy por encima de lo recomendado por las normas internacionales, como ejemplo se puede mencionar la norma LRFD y las investigaciones de Ellingwood los cuales indica un β del orden 3.00, por ello tomando en consideración solo el diseño por corte podemos recomendar que la combinación de diseño $\alpha_D = 1.3$ y $\alpha_L = 1.6$, es adecuada.

Hasta este punto la combinación de diseño $\alpha_D = 1.3$ y $\alpha_L = 1.6$, se presenta como una buena candidata en los dos casos estudiados anteriormente (flexión y corte), pero aun falta estudiar la deflexión ya que es el que determina el grado de confort de los usuarios.
4.1.4.3. Análisis de Confiabilidad para Deflexiones - COMB. 01.

El modelo utilizado para este estado limite de servicio, sera una viga simplemente apoyada de una luz de 3.50 m, esta viga corresponde a una vigueta de aligerado como se muestra en la Figura4.6. Esta viga cumple con los requerimientos de peralte y sección estipulada en el RNE y en la sección 3.3 de esta investigación Tabla3.2:

Figura 4.6: Estructura empleada en el análisis para deflexión. Fuente: Propia.

La sección de estudio utilizada en el proceso de calculo de la confiabilidad corresponde a la máxima deflexión que ocurre en el centro de luz de la viga. El análisis de confiabilidad de realizara usando la inercia efectiva de la sección, como establece le código ACI, y las recomendaciones del RNE. La flexión esta directamente relacionada con el momento actuante que causa la deformación del elemento, por ello se utilizaran los valores de los coeficentes de reduccion de resistencia mencionados en la sección 5.4.

Para realizar el análisis de confiabilidad se necesita conocer la inercia efectiva *Ie*, la cual será calculada por medio de la ecuación propuesta por Branson, tal como se menciona en la sección 3.3.1. Los parámetros necesarios para el cálculo de la *Ie* se muestran en la tabla4.8:

Parametro	l _g	M _{cr}	Ma _{LD}	Ma _D	$(M_{cr}/Ma_{LD})^3$	$(M_{cr}/Ma_D)^3$
Valor	$11800.595 \cdot cm^4$	25882.121 kg.cm	33075 ·kg.cm	18375 -kg.cm	0.47918	2.79459

Tabla 4.8: Parámetros de diseño para la inercia efectiva. Fuente: Propia.

En la tabla4.8, los sub-índices L y D, representan a la carga viva y muerta, según sea

el caso de acción de estas cargas. Para el cálculo de la inercia efectiva Ie, se necesita conocer le valor de la inercia crítica I_{cr} , la tabla4.9 se indica los parámetros que no se mencionan en la tabla4.8 para el cálculo de este valor, en las combinaciones de diseño de la sección 5.3:

	$\alpha_D = 1.4; \alpha_L = 1.7$								
φ	φ	c (cm)	I_{cr} (cm4)	<i>le</i> (cm4) - (L+D)	le (cm4) - (D)				
1.00	0.004407420	2.21549212	1455.192207	6412.517863	11800.59524				
0.90	0.004929143	2.44010546	1614.822697	6495.656377	11800.59524				
0.80	0.005591703	2.71570103	1818.720516	6601.850135	11800.59524				
0.70	0.006461523	3.06205262	2089.953328	6743.113203	11800.59524				
0.60	0.007655166	3.51088759	2471.368493	6941.761281	11800.59524				
		•	$\alpha_D = 1.3; \alpha_L$	= 1.7					
φ	φ	c (cm)	I_{cr} (cm4)	<i>le</i> (cm4) - (L+D)	Ie (cm4) - (D)				
1.00	0.002015949	1.09047483	711.2471019	6025.057483	11800.59524				
0.90	0.002246195	1.20618349	785.4076372	6063.681663	11800.59524				
0.80	0.002535873	1.34939059	877.5119967	6111.651318	11800.59524				
0.70	0.002911441	1.53123739	995.3242262	6173.010108	11800.59524				
0.60	0.003417831	1.76983985	1152.114144	6254.669199	11800.59524				
			$\alpha_D = 1.3; \alpha_L$	= 1.6	**************************************				
Ø	φ	c (cm)	I_{cr} (cm4)	<i>le</i> (cm4) - (L+D)	<i>le</i> (cm4) - (D)				
1.00	0.002015949	1.09047483	711.2471019	6025.057483	11800.59524				
0.90	0.002246195	1.20618349	785.4076372	6063.681663	11800.59524				
0.80	0.002535873	1.34939059	877.5119967	6111.651318	11800.59524				
0.70	0.002911441	1.53123739	995.3242262	6173.010108	11800.59524				
0.60	0.003417831	1.76983985	1152.114144	6254.669199	11800.59524				
			$\alpha_D = 1.2; \alpha_L$	= 1.6					
φ	φ	c (cm)	I_{cr} (cm4)	<i>le</i> (cm4) - (L+D)	<i>Ie</i> (cm4) - (D)				
1.00	0.001857314	1.00976258	659.5813981	5998.149029	11800.59524				
0.90	0.002068966	1.11726816	728.4064562	6033.994393	11800.59524				
0.80	0.002335103	1.25041482	813.8081918	6078.473197	11800.59524				
0.70	0.002679902	1.41963120	922.8825389	6135.281136	11800.59524				
0.60	0.003144347	1.64190074	1067.676294	6210.692404	11800.59524				

Tabla 4.9: Parámetros de diseño para la inercia efectiva. Fuente: Propia.

Con la definición de los parámetros anteriores, podemos empezar a desarrollas la función de falla que gobernara la deflexión, esta función se desarrolla sobre la comparación de la flecha total que ocurre en un elemento después de la colocación de las cargas de servicio, con la flecha máxima recomendada para que los elementos no sufran deflexiones excesivas, Para este condición la deflexión no deberá de exceder el limite de 1/480.

Como primer paso para difinir la función de falla debemos de calcular las deflexio-

nes instantáneas producidas por la caga muerta(D) y la carga muerta mas la carga viva(L+D):

$$Dinst_{D} = \frac{5}{48} \frac{M_{D}L^{2}}{E_{c}Ie_{D}}$$
(4.1.11)

$$Dinst_{L+D} = \frac{5}{48} \frac{M_{L+D}L^2}{E_c Ie_{L+D}}$$
(4.1.12)

Con estas ecuaciones calculamos la deflexión instantánea producida por la carga viva(L):

$$Dinst_L = Dinst_{L+D} - Dinst_D \tag{4.1.13}$$

Entonces la deflexión instantánea estará dada por la suma de la deflexiones instantáneas producida por la caga muerta(D), mas un porcentaje de la deflexión instantánea producida por la carga viva(L), según las recomendaciones del RNE en su sección 9.6.2.5:

$$Dinst = Dinst_D + 0.4Dinst_L \tag{4.1.14}$$

Para conocer la deflexión total del elemento nos hace falta definir la deflexión diferida que se producirá a lo largo de la vida útil del elemento, esta deflexión diferida esta definida por:

$$Ddif = \frac{\xi}{1+50\rho'}(Dinst) \tag{4.1.15}$$

En la ecuación anterior y para nuestro caso de análisis, se tomara para ξ un valor de 2, y se considerará que no existe la cuantía en compresión ρ' , entonces la deflexión total será:

$$D = Ddif + Dinst_L \tag{4.1.16}$$

118

La función de falla para el análisis de la deflexión será:

$$G = \frac{l_{RNE}}{480} - \frac{5l^4}{48 \cdot 8 \cdot 15000\sqrt{X(3)}} \left[\frac{\xi}{1+50\rho'} \left(\frac{3X(1)}{5Ie_D} + \frac{2(X(1)+X(2))}{5Ie_{L+D}} \right) + \left(\frac{X(1)+X(2)}{Ie_{L+D}} - \frac{X(1)}{Ie_D} \right) \right]$$
(4.1.17)

En el Anexo E se muestra el análisis para $\alpha_D = 1.4$, $\alpha_L = 1.7$ y $\varphi = 0.90$, con un valor de Ie(L+D) de 6495.66.

Se efectuó un análisis FORM y SORM para cada caso. Los resultados del análisis de confiabilidad se muestran en la tabla4.10.

		$\alpha_D = 1.4; \alpha_L$	= 1.7	
φ	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.59075256	1.6486E-04	3.444827804	2.8571E-04
0.90	3.648601805	1.3184E-04	3.501783926	2.3108E-04
0.80	3.719929899	9.9639E-05	3.572292268	1.7694E-04
0.70	3.810680729	6.9292E-05	3.662758497	1.2476E-04
0.60	3.930540535	4.2378E-05	3.784214772	7.7097E-05
		$\alpha_D = 1.3; \alpha_L$	= 1.7	
ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.298262771	4.8643E-04	3.159080122	7.9134E-04
0.90	3.329198486	4.3548E-04	3.18931219	7.1306E-04
0.80	3.367051503	3.7988E-04	3.226271162	6.2707E-04
0.70	3.414568827	3.1942E-04	3.272623574	5.3277E-04
0.60	3.476272981	2.5422E-04	3.33285822	4.2979E-04
		$\alpha_D = 1.3; \alpha_L$	= 1.6	
ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.298262771	4.8643E-04	3.159080122	7.9134E-04
0.90	3.329198486	4.3548E-04	3.18931219	7.1306E-04
0.80	3.367051503	3.7988E-04	3.226271162	6.2707E-04
0.70	3.414568827	3.1942E-04	3.272623574	5.3277E-04
0.60	3.476272981	2.5422E-04	3.33285822	4.2979E-04
		$\alpha_D = 1.2; \alpha_L$	= 1.6	• • • • • • • • • • • • • • • • • • •
φ	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.276466273	5.2557E-04	3.13781732	8.5105E-04
0.90	3.305457325	4.7411E-04	3.166117889	7.7244E-04
0.80	3.340937198	4.1748E-04	3.200806466	6.8522E-04
0.70	3.385469596	3.5528E-04	3.244207074	5.8889E-04
0.60	3.443257919	2.8738E-04	3.300630383	4.8234E-04

Tabla 4.10: Indice de confiabilidad y probabilidad de falla para Deflexiones. Fuente: Propia.

Las Figuras 4.7 y 4.8 muestran la variación de los índices de confiabilidad y sus respectivas probabilidades de falla mostrados en la tabla4.10, para los métodos FORM y SORM.

Figura 4.7: Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - Deflexión. Fuente: Propia.

Figura 4.8: Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - Deflexión. Fuente: Propia.

Como puede observarse mientras mayor es el factor de resistencia, menor es el índice de confiabilidad y mayor la probabilidad de falla relacionada. Además puede verificarse que la probabilidad de falla aumenta considerablemente mientras menores son los factores de amplificación de cargas y mayor es el factor de resistencia, φ .

Para un factor de resistencia igual a 0.90 como es usual en el cálculo de la deflexión y para los casos en los que $\alpha_D = 1.4$ y $\alpha_L = 1.7$; y, $\alpha_D = 1.3$ y $\alpha_L = 1.6$ la probabilidad de falla obtenida se encuentran separadas estando en el orden de 1.32×10^{-4} y 4.35×10^{-4} tal como se aprecia en la Figura 4.8. Para estos casos, los β respectivos son 3.65 y 3.33. Sin embargo la probabilidad de falla aumenta hasta el orden de 4.74×10^{-4} para $\alpha_D = 1.2$ y $\alpha_L = 1.6$ para el mismo factor de resistencia. El índice de confiabilidad obtenido para este caso es igual 3.31.

De los calculo anteriores vemos que el indice de confiabilidad de nuestra norma se encuentra apreciablemente cerca de lo recomendado por las normas internacionales, como ejemplo se puede mencionar la norma LRFD y las investigaciones de Ellingwood los cuales indica un β del orden 3.00, por ello tomando en consideración solo el diseño por deflexión podemos recomendar que la combinación de diseño $\alpha_D = 1.3$ y $\alpha_L = 1.6$, es adecuada.

Por lo tanto habiendo revisado los tres casos anteriores podemos establecer que la combinación de diseño $\alpha_D = 1.3$ y $\alpha_L = 1.6$, se presenta como una buena alternativa de cambio.

4.1.5. Análisis de Confiabilidad de la COMB. 02 - ELRS.

4.1.5.1. Análisis de Confiabilidad en Flexión - COMB. 02.

Para el análisis a flexión de la combinación de diseño 02, se utilizara el mismo modelo matemático desarrollado en la sección 5.4.1 de esta investigación. Los parámetros de diseño se muestran en la tabla4.11:

Parametro	CM	CV	d	b	f'c	fy
Valor	120 ·kg/m	0 ·kg/m	0.17 ·m	0.40 ∙m	$210 \cdot kg/cm^2$	$4200 \cdot kg/cm^2$

Tabla 4.11: Parámetros para el diseño en flexión. Fuente: Propia.

La Tabla 4.12 muestra la cuantía de acero para los requisitos de resistencia de la sección 5.3.

Mu + (ton.m)	Cuantia de acero ρ , para distintas combinaciones de carga						
¢	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$			
1.00	0.000700928	0.000656775	0.000612669	0.000568609			
0.90	0.000779538	0.000730390	0.000681299	0.000632266			
0.80	0.000878010	0.000822591	0.000767246	0.000711974			
0.70	0.001004962	0.000941437	0.000878010	0.000814680			
0.60	0.001174839	0.001100431	0.001026158	0.000952018			

Tabla 4.12: Cuantías de acero requeridas según requisitos de resistencia. Fuente: Propia.

La función de falla para esta combinación de diseño será:

$$G = \rho \cdot X(4) \cdot b \cdot d^{2} \cdot \left(1 - 0.59 \cdot \rho \cdot \frac{X(4)}{X(3)}\right) - 1.76 \cdot X(1)$$
(4.1.18)

Se efectuó un análisis FORM y SORM para cada caso. Los resultados del análisis de confiabilidad se muestran en la tabla4.13.

Las Figuras 4.9 y 4.10 muestran la variación de los índices de confiabilidad y sus respectivas probabilidades de falla mostrados en la tabla4.13, para los métodos *FORM* y *SORM*.

Como puede observarse mientras mayor es el factor de resistencia, menor es el índice de confiabilidad y mayor la probabilidad de falla relacionada. Además puede verificarse que la probabilidad de falla aumenta considerablemente mientras menores son los factores de amplificación de cargas y mayor es el factor de resistencia, φ .

	$\alpha_D = 1.6$						
ø	β FORM	Pf FORM	β SORM	Pf SORM			
1.00	6.673973000	1.244847E-11	6.672102948	1.260818E-11			
0.90	7.704934717	6.545510E-15	7.703088233	6.640829E-15			
0.80	8.790188372	7.465470E-19	8.788454916	7.581543E-19			
0.70	9.923062258	1.652294E-23	9.921434408	1.679469E-23			
0.60	11.093305099	6.759921E-29	11.091886009	6.868038E-29			
		$\alpha_D = 1$.	5				
¢	β FORM	Pf FORM	β SORM	Pf SORM			
1.00	6.018748590	8.788531E-10	6.016860396	8.891616E-10			
0.90	7.079555987	7.230853E-13	7.077702380	7.328203E-13			
0.80	8.204961801	1.153321E-16	8.203198296	1.170373E-16			
0.70	9.389021725	3.028005E-21	9.387345349	3.076575E-21			
0.60	10.621534212	1.183197E-26	10.620035405	1.202350E-26			
		$\alpha_D = 1.$	4				
φ	β FORM	Pf FORM	β SORM	Pf SORM			
1.00	5.302131290	5.722924E-08	5.300243027	5.782432E-08			
0.90	6.389968822	8.295979E-11	6.388055277	8.400431E-11			
0.80	7.554222630	2.106844E-14	7.552398231	2.136578E-14			
0.70	8.790188372	7.465470E-19	8.788454916	7.581543E-19			
0.60	10.088234933	3.113964E-24	10.086672218	3.163921E-24			
		$\alpha_D = 1.$	3				
φ	β FORM	Pf FORM	β SORM	Pf SORM			
1.00	4.518025320	3.120951E-06	4.516196273	3.148016E-06			
0.90	5.628593013	9.084276E-09	5.626737439	9.182497E-09			
0.80	6.828876863	4.279100E-12	6.826981953	4.335980E-12			
0.70	8.116209465	2.404851E-16	8.114392717	2.441101E-16			
0.60	9.482274791	1.243995E-21	9.480604762	1.264068E-21			

Tabla 4.13: Indice de confiabilidad y probabilidad de falla para flexión. Fuente: Propia.

Figura 4.9: Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - flexión. Fuente: Propia.

Para un factor de resistencia igual a 0.9 como es usual en flexión y para los casos en

Figura 4.10: Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - flexión. Fuente: Propia.

los que $\alpha_D = 1.5$; y, $\alpha_D = 1.4$ la probabilidad de falla obtenida es muy cercana y se encuentra en el orden de $7.28 * 10^{-13}$ y $8.35 * 10^{-11}$ tal como se aprecia en la Figura 4.9. Para estos casos, los β respectivos son 7.08 y 6.39. Sin embargo la probabilidad de falla aumenta hasta el orden de $9.13 * 10^{-9}$ para $\alpha_D = 1.3$ para el mismo factor de resistencia. El índice de confiabilidad obtenido para este caso es igual 5.63.

Hasta este punto podemos indicar que el indice de confiabilidad de nuestra norma se encuentra muy por encima de lo recomendado por las normas internacionales, como ejemplo se puede mencionar la norma LRFD y las investigaciones de Ellingwood[36] los cuales indica un β del orden 3.00, por ello tomando en consideración solo el diseño por flexión podemos recomendar que la combinación de diseño $\alpha_D = 1.3$, es adecuada.

Sin embargo, los elementos estructurales no están sujetos solamente a flexión, sino también a fuerza cortante. Por ello es conveniente, estudiar la respuesta del diseño por corte y su probabilidad de falla, para unificar criterios en la selección de los factores más adecuados.

4.1.5.2. Análisis de Confiabilidad para Cortante - COMB. 02.

Para el análisis por corte de la combinación de diseño 02, se utilizara el mismo modelo matemático desarrollado en la sección 5.4.2 de esta investigación. Los parámetros de diseño se muestran en la tabla4.14:

l	Parametro	CM	CV	d	b	f [°] c
	Valor	120 ·kg/m	$0 \cdot kg/m$	0.17 ·m	0.10 ·m	$210 \cdot kg/cm^2$

Tabla 4.14: Parámetros de diseño para fuerza cortante. Fuente: Propia.

En la Tabla4.15 se muestra los valores del producto $b_w \cdot d$ de cuerdo a las combinaciones de diseño y los coeficientes mencionados en la sección 5.3.

Vu-(ton)	Valor de $d * b_w(cm2)$, para distintas combinaciones de carga						
¢	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$			
1.00	73.8709	69.2539	64.6370	60.0201			
0.95	77.7588	72.8989	68.0390	63.1790			
0.90	82.0787	76.9488	71.8189	66.6890			
0.85	86.9069	81.4752	76.0435	70.6119			
0.80	92.3386	86.5674	80.7963	75.0251			

Tabla 4.15: Producto $d * b_w$ requeridas según requisitos de resistencia. Fuente: Propia.

La función de falla para esta combinación de diseño será:

$$G = 0.53b_w d\sqrt{X(3)} - 2.92X(1) \tag{4.1.19}$$

Se efectuó un análisis FORM y SORM para cada caso. Los resultados del análisis de confiabilidad se muestran en la tabla4.16.

Las Figuras 4.11 y 4.12 muestran la variación de los índices de confiabilidad y sus respectivas probabilidades de falla mostrados en la tabla4.16, para los métodos *FORM* y *SORM*.

		$\alpha_D = 1.$	6	
φ	β FORM	Pf FORM	β SORM	Pf SORM
1.00	5.252249837	7.5126E-08	5.252247439	7.5127E-08
0.95	5.698904131	6.0290E-09	5.698899188	6.0292E-09
0.90	6.169713650	3.4207E-10	6.169716739	3.4206E-10
0.85	6.667446462	1.3015E-11	6.667435861	1.3016E-11
0.80	7.195356223	3.1149E-13	7.195365467	3.1147E-13
		$\alpha_D=1.$	5	
ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	4.690242758	1.3644E-06	4.690240667	1.3644E-06
0.95	5.136909341	1.3965E-07	5.136887677	1.3966E-07
0.90	5.607719315	1.0251E-08	5.607724190	1.0250E-08
0.85	6.105450483	5.1256E-10	6.105447569	5.1257E-10
0.80	6.633362786	1.6406E-11	6.633363608	1.6406E-11
		$\alpha_D=1.$	4	
Ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	4.089459238	2.1619E-05	4.089465652	2.1618E-05
0.95	4.536125915	2.8648E-06	4.536120738	2.8649E-06
0.90	5.006935519	2.7652E-07	5.006927602	2.7653E-07
0.85	5.504663289	1.8494E-08	5.50465787	1.8494E-08
0.80	6.032586966	8.0678E-10	6.032601461	8.0670E-10
L		$\alpha_D = 1.$	3	
Ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.444068537	2.8652E-04	3.444066916	2.8652E-04
0.95	3.890786807	4.9960E-05	3.890784919	4.9960E-05
0.90	4.361609287	6.4555E-06	4.361613762	6.4553E-06
0.85	4.859344515	5.8888E-07	4.859341701	5.8888E-07
0.80	5.387255656	3.5771E-08	5.387254054	3.5771E-08

Tabla 4.16: Indice de confiabilidad y probabilidad de falla por Corte. Fuente: Propia.

Figura 4.11: Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - Corte. Fuente: Propia.

Como puede observarse mientras mayor es el factor de resistencia, menor es el índice de confiabilidad y mayor la probabilidad de falla relacionada. Además puede

Figura 4.12: Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - Corte. Fuente: Propia.

verificarse que la probabilidad de falla aumenta considerablemente mientras menores son los factores de amplificación de cargas y mayor es el factor de resistencia, φ .

Para un factor de resistencia igual a 0.85 como es usual en corte y para los casos en los que $\alpha_D = 1.5$; y, $\alpha_D = 1.4$ la probabilidad de falla obtenida es muy cercana y se encuentra en el orden de $5.13 * 10^{-10}$ y $1.85 * 10^{-8}$ tal como se aprecia en la Figura 4.11. Para estos casos, los β respectivos son 6.11 y 5.50. Sin embargo la probabilidad de falla aumenta hasta el orden de $5.89 * 10^{-7}$ para $\alpha_D = 1.3$ para el mismo factor de resistencia. El índice de confiabilidad obtenido para este caso es igual 4.86.

De los calculo anteriores vemos que el indice de confiabilidad de nuestra norma se encuentra muy por encima de lo recomendado por las normas internacionales, como ejemplo se puede mencionar la norma LRFD y las investigaciones de Ellingwood[36] los cuales indica un β del orden 3.00, por ello tomando en consideración solo el diseño por corte podemos recomendar que la combinación de diseño $\alpha_D = 1.3$, es adecuada. Hasta este punto la combinación de diseño $\alpha_D = 1.3$ se presenta como una buena candidata en los dos casos estudiados anteriormente (flexión y corte), pero aun falta estudiar la deflexión ya que es el que determina el grado de confort de los usuarios.

4.1.5.3. Análisis de Confiabilidad para Deflexiones - COMB. 02.

Para el análisis de deflexión de la combinación de diseño 02, se utilizara el mismo modelo matemático desarrollado en la sección 5.4.3 de esta investigación. Para realizar el análisis de confiabilidad se necesita conocer la inercia efectiva Ie, la cual será calculada por medio de la ecuación propuesta por Branson, tal como se menciona en la sección 3.3.1. Los parámetros necesarios para el cálculo de la Ie se muestran en la tabla4.17:

Parametro	Ig	M _{cr}	Ma _{LD}	Ma _D	$(M_{cr}/Ma_{LD})^3$	$(M_{cr}/Ma_D)^3$
Valor	11800.595 ·cm ⁴	25882.121 ·kg.cm	18375 ·kg.cm	18375 ·kg.cm	2.79459	2.79459

Tabla 4.17: Parámetros de diseño para la inercia efectiva. Fuente: Propia.

La tabla4.18 nos indica los parámetros que no se mencionan en la tabla4.17 para el cálculo de este valor, en las combinaciones de diseño de la sección 5.3:

La función de falla para el análisis de la deflexión será:

$$G = \frac{l_{RNE}}{480} - \frac{5l^4}{48 \cdot 8 \cdot 15000\sqrt{X(3)}} \left[\frac{\xi}{1 + 50\rho'} \left(\frac{3X(1)}{5Ie_D} + \frac{2X(1)}{5Ie_{L+D}} \right) + \left(\frac{X(1)}{Ie_{L+D}} - \frac{X(1)}{Ie_D} \right) \right]$$
(4.1.20)

Se efectuó un análisis FORM y SORM para cada caso. Los resultados del análisis de confiabilidad se muestran en la tabla4.19.

Las Figuras 4.13 y 4.14 muestran la variación de los índices de confiabilidad y sus respectivas probabilidades de falla mostrados en la tabla4.19, para los métodos

	$\alpha_D = 1.6$							
ø	φ	c (cm)	l_{cr} (cm4)	<i>le</i> (cm4) - (L+D)	Ie (cm4) - (D)			
1.00	0.002495638	1.32965537	864.7904285	34529.72486	11800.59524			
0.90	0.002782641	1.46935149	955.0968715	34691.78758	11800.59524			
0.80	0.003144347	1.64190074	1067.676294	34893.82109	11800.59524			
0.70	0.003614358	1.86046921	1212.528262	35153.77047	11800.59524			
0.60	0.004250052	2.14637487	1407.100416	35502.94702	11800.59524			
			$\alpha_D = 1.5$	5				
φ	φ	c (cm)	I_{cr} (cm4)	<i>le</i> (cm4) - (L+D)	Ie (cm4) - (D)			
1.00	0.002335103	1.25041482	813.8081918	34438.23283	11800.59524			
0.90	0.002603022	1.38221652	898.6964119	34590.57208	11800.59524			
0.80	0.002940479	1.54512151	1004.370924	34780.21413	11800.59524			
0.70	0.003378644	1.75163888	1140.044173	35023.6915	11800.59524			
0.60	0.003970641	2.02204999	1321.680248	35349.65314	11800.59524			
			$\alpha_D = 1.4$					
ø	φ	c (cm)	I_{cr} (cm4)	le (cm4) - (L+D)	<i>Ic</i> (cm4) - (D)			
1.00	0.002175209	1.17069010	762.6413057	34346.40943	11800.59524			
0.90	0.002424210	1.29449672	842.1517818	34489.09785	11800.59524			
0.80	0.002737660	1.44762211	941.0073253	34666.50267	11800.59524			
0.70	0.003144347	1.64190074	1067.676294	34893.82109	11800.59524			
0.60	0.003693248	1.89654722	1236.732111	35197.20637	11800.59524			
			$\alpha_D = 1.3$	3				
¢	φ	c (cm)	I_{cr} (cm4)	Ie (cm4) - (L+D)	<i>le</i> (cm4) - (D)			
1.00	0.002015949	1.09047483	711.2471019	34254.17808	11800.59524			
0.90	0.002246195	1.20618349	785.4076372	34387.26558	11800.59524			
0.80	0.002535873	1.34939059	877.5119967	34552.55481	11800.59524			
0.70	0.002911441	1.53123739	995.3242262	34763.97904	11800.59524			
0.60	0.003417831	1.76983985	1152.114144	35045.35211	11800.59524			

Tabla 4.18: Parámetros de diseño para la inercia efectiva. Fuente: Propia.

FORM y SORM.

Figura 4.13: Variación de β_{FORM} y Pf_{FORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - Deflexión. Fuente: Propia.

Como puede observarse mientras mayor es el factor de resistencia, menor es el

		$\alpha_D = 1.$	6	
ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.202256413	6.8178E-04	3.189339814	7.1299E-04
0.90	3.225787177	6.2813E-04	3.21292214	6.5696E-04
0.80	3.254726446	5.6751E-04	3.241931482	5.9361E-04
0.70	3.291327642	4.9858E-04	3.278599921	5.2162E-04
0.60	3.339394427	4.1981E-04	3.326797185	4.3925E-04
		$\alpha_D = 1$.	5	
ø	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.188846022	7.1421E-04	3.175898521	7.4687E-04
0.90	3.211124505	6.6108E-04	3.198234509	6.9136E-04
0.80	3.238506972	6.0079E-04	3.225685734	6.2836E-04
0.70	3.273100718	5.3187E-04	3.260346235	5.5638E-04
0.60	3.318445375	4.5260E-04	3.3057941	4.7354E-04
		$\alpha_D=1.$	4	
φ	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.17529464	7.4842E-04	3.162308005	7.8262E-04
0.90	3.196312835	6.9598E-04	3.183371947	7.2785E-04
0.80	3.222134615	6.3620E-04	3.209259174	6.6539E-04
0.70	3.254726446	5.6751E-04	3.241931482	5.9361E-04
0.60	3.29737488	4.8797E-04	3.284674616	5.1050E-04
		$\alpha_D=1.$	3	
¢	β FORM	Pf FORM	β SORM	Pf SORM
1.00	3.161589137	7.8455E-04	3.148589834	8.2030E-04
0.90	3.181335706	7.3299E-04	3.168359362	7.6651E-04
0.80	3.20558845	6.7393E-04	3.192680752	7.0479E-04
0.70	3.236177895	6.0571E-04	3.22334199	6.3352E-04
0.60	3.276148076	5.2617E-04	3.263405723	5.5041E-04

Tabla 4.19: Indice de confiabilidad y probabilidad de falla para Deflexiones. Fuente: Propia.

Figura 4.14: Variación de β_{SORM} y Pf_{SORM} según el factor de resistencia, φ , para las combinaciones de diseño propuestos - Deflexión. Fuente: Propia.

índice de confiabilidad y mayor la probabilidad de falla relacionada. Además puede verificarse que la probabilidad de falla aumenta considerablemente mientras menores son los factores de amplificación de cargas y mayor es el factor de resistencia, φ .

Para un factor de resistencia igual a 0.90 como es usual en el cálculo de la deflexión y para los casos en los que $\alpha_D = 1.5$; y, $\alpha_D = 1.4$ la probabilidad de falla obtenida se encuentran separadas estando en el orden de $6.76 * 10^{-4}$ y $7.125 * 10^{-4}$ tal como se aprecia en la Figura 4.13. Para estos casos, los β respectivos son 3.20 y 3.19. Sin embargo la probabilidad de falla aumenta hasta el orden de $7.49 * 10^{-4}$ para $\alpha_D = 1.3$ para el mismo factor de resistencia. El índice de confiabilidad obtenido para este caso es igual 3.17.

De los calculo anteriores vemos que el indice de confiabilidad de nuestra norma se encuentra apreciablemente cerca de lo recomendado por las normas internacionales, como ejemplo se puede mencionar la norma LRFD y las investigaciones de Ellingwood[36] los cuales indica un β del orden 3.00, por ello tomando en consideración solo el diseño por deflexión podemos recomendar que la combinación de diseño $\alpha_D = 1.4$, es adecuada.

Por lo tanto habiendo revisado los tres casos anteriores podemos establecer que la combinación de diseño $\alpha_D = 1.4$, se presenta como una buena alternativa de cambio.

4.1.6. Análisis de Confiabilidad de la COMB. 03 - ELEE.

4.1.6.1. Análisis de Confiabilidad para Distorsión - COMB. 03.

Para la calibración del código en distorsión se utilizó 02 modelos, el primer modelo es la estructura mostrada en la Figura4.15. En el pórtico mostrada en la figura anterior se consideró que las columnas (1) y (2) son axialmente rígidas ($A = \infty$), la viga (3) infinitamente rígida ($A = \infty; I = \infty$), con estas consideraciones obtenemos que el pórtico tendrá un solo grado de libertad Δ en la dirección del sentido X, paralelo a la aplicación de la fuerza sísmica. Este modelo es muy común en el análisis sísmico de edificios y es considerado como Edificios de Corte(Aguiar Falconi)[37], en el cual la masa esta concentrada a nivel de entrepiso y cuyas deformaciones se deben exclusivamente al esfuerzo de corte.

Figura 4.15: Estructura empleada en el análisis de distorsiones. Fuente: Propia.

En el cálculo de las distorsiones, la rigidez de las columnas están directamente relacionadas con el desplazamiento lateral de la estructura.

En función a lo anterior se ha calculado la rigidez de las columnas (1) y (2), necesarias para cumplir con los desplazamientos máximos indicados en la tabla3.10 de este trabajo. La resistencia requerida corresponde a los procedimientos indicados en la sección 3.4. Los parámetros se muestran en la tabla4.20.

Parámetro	CM (kg/m2)	CV (kg/m2)	hn (m)	L (m)	f'c (kg/cm2)	fy (kg/cm2)
Valor	300	240	3.50	4.00	210	4200
Parámetro	Ancho trib.(m)	CM (kg/m)	CV (kg/m)	Categoría U	Factor C	Factor R
Valor	5.00	1500.00	1200.00	1.50	2.5	8

Tabla 4.20: Parámetros para el diseño de distorsión. Fuente: Propia.

En la Tabla4.21 se muestra los valores de la división entre el factor de sitio S y la Inercia $I_1 + I_2$ de cuerdo a las combinaciones de diseño y los factores de zona sísmica Z mencionados en la sección 3.4.

Factor de Zona	Valores de ZS/I, para distintas combinaciones de carga					
Z	$\alpha_D = 1.25; \alpha_L = 1.25; \alpha_S = 1$	$\alpha_D = 1.25; \alpha_L = 1.15; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1.1; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1; \alpha_S = 1$		
0.45	0.00006912435	0.00007046260	0.00007098965	0.00007143119		
0.35	0.00006772185	0.00006937765	0.00007040095	0.00007089211		
0.25	0.00006532896	0.00006749764	0.00006907281	0.00007018932		
0 .10	0.00005508394	0.00005905865	0.00006484593	0.00006717342		

Tabla 4.21: Valores de $ZS/(I_1 + I_2)$ requeridas según requisitos de distorsión. Fuente: Propia.

Con la definición de los parámetros anteriores, podemos empezar a desarrollas la función de falla que gobernara la distorsión, esta función se desarrolla sobre la comparación de la deriva que ocurre en un elemento después de la colocación de las cargas sísmicas, con la deriva recomendada para que los elementos no sufran deflexiones excesivas, Para este condición la distorsión no deberá de exceder el limite de $0.007h_n$.

Como primer paso para difinir la función de falla debemos de calcular la deriva producida por la caga sísmica, según lo indicado en la figura4.15:

$$F = K\Delta \tag{4.1.21}$$

$$\Delta = K^{-1}F \tag{4.1.22}$$

De la ecuación anterior tenemos que para el pórtico mostrado en al figura4.15, la rigidez del sistema esta dado por:

$$K = \frac{12E}{h_n^3} (I_1 + I_2) \tag{4.1.23}$$

La intensidad de la fuerza sísmica F, según las recomendaciones de la norma E030 en su sección 4.3 Estimación del peso y la sección 4.5.2 Fuerza cortante en la base:

$$F = \frac{ZUCS}{R}P = \frac{ZUCS}{R}(CM + 0.5CV)$$
(4.1.24)

Para conocer la deriva del sistema reemplazamos los valores anteriores, con lo cual la distorsión estará definida por:

$$\Delta = \frac{ZUCS \cdot h_n^3}{12E(I_1 + I_2)R}(CM + 0.5CV)$$
(4.1.25)

Tomando los valores de U = 1.5, C = 2.5, R = 8 y considerando que las columnas (1), (2) tiene la misma sección $I_1 = I_2 = I$, tenemos que la distorsión será:

$$\Delta = \frac{1.5 \cdot 2.5 \cdot h_n^3}{8 \cdot 24 \cdot E} (CM + 0.5CV) \frac{ZS}{I}$$
(4.1.26)

La función de falla para el análisis de la deflexión será:

$$G = 0.007 \cdot h_n - \frac{1.5 \cdot 2.5 \cdot h_n^3}{8 \cdot 24 \cdot 15000 \sqrt{X(3)}} \left[X(1) + 0.5 \cdot X(2) \right] \frac{ZS}{I}$$
(4.1.27)

En el Anexo E se muestra el análisis para $\alpha_D = 1.25$, $\alpha_L = 1.25$, $\alpha_S = 1$ y Z = 0.45, con un valor de ZS/I de 0.00006912435.

Se efectuó un análisis FORM y SORM para cada caso. Los resultados del análisis de confiabilidad se muestran en la tabla4.22.

Las Figuras 4.16 y 4.17 muestran la variación de los índices de confiabilidad y sus respectivas probabilidades de falla mostrados en la tabla4.22, para los métodos FORM y SORM.

Como puede observarse mientras mayor es el factor de zona sísmica Z, menor es el índice de confiabilidad y mayor la probabilidad de falla relacionada. Además puede verificarse que la probabilidad de falla aumenta considerablemente mientras menores son los factores de amplificación de cargas y mayor es el factor de zona sísmica, Z.

Para un factor de zona Z igual a 0.45, que es el valor máximo y para los casos en los que $\alpha_D = 1.25$, $\alpha_L = 1.25$ y $\alpha_S = 1$; y, $\alpha_D = 1.2$, $\alpha_L = 1.1$ y $\alpha_S = 1$ la probabilidad

[$\alpha_D = 1.25; \alpha_L = 1.25; \alpha_S = 1$					
Z	β FORM	Pf FORM	β SORM	Pf SORM		
0.45	2.211645989	1.349557E-02	2.111495377	1.736488E-02		
0.35	2.352622937	9.320763E-03	2.251648913	1.217223E-02		
0.25	2.591640189	4.775981E-03	2.489777608	6.391153E-03		
0.10	3.575544276	1.747500E-04	3.484743765	2.463043E-04		
	۵	$a_D = 1.25; \alpha_L = 1$	$.15; \alpha_{\rm S} = 1$			
Z	β FORM	Pf FORM	β SORM	Pf SORM		
0.45	2.076735422	1.891299E-02	1.977296090	2.400409E-02		
0.35	2.186127784	1.440313E-02	2.086131030	1.848338E-02		
0.25	2.375105638	8.771964E-03	2.274008652	1.148273E-02		
0.10	3.203867674	6.779739E-04	3.104739755	9.522325E-04		
	<u> </u>	$\alpha_D = 1.2; \alpha_L = 1$	$.1; \alpha_S = 1$			
Z	β FORM	Pf FORM	β SORM	Pf SORM		
0.45	2.023458006	2.151297E-02	1.924444411	2.714945E-02		
0.35	2.082963901	1.862726E-02	1.983459298	2.365807E-02		
0.25	2.216836303	1.331714E-02	2.116635399	1.714540E-02		
0.10	2.639608063	4.150098E-03	2.537648280	5.580004E-03		
$\alpha_D = 1.2; \alpha_L = 1; \alpha_S = 1$						
Z	β FORM	Pf FORM	β SORM	Pf SORM		
0.45	1.978786286	2.392004E-02	1.880121849	3.004574E-02		
0.35	2.033321824	2.101001E-02	1.934200166	2.654426E-02		
0.25	2.104338968	1.767444E-02	2.004689495	2.249813E-02		
0.10	2.407587651	8.029153E-03	2.306373538	1.054488E-02		

Tabla 4.22: Indice de confiabilidad y probabilidad de falla para Distorsiones. Fuente: Propia.

Figura 4.16: Variación de β_{FORM} y Pf_{FORM} según la zona sísmica, Z, para las combinaciones de diseño propuestos - Distorsión. Fuente: Propia.

de falla obtenida se encuentran separadas estando en el orden de $1.54*10^{-2}$ y $4.43*10^{-2}$ tal como se aprecia en la Figura 4.16. Para estos casos, los β respectivos son 2.16 y 1.97. Sin embargo la probabilidad de falla aumenta hasta el orden de

Figura 4.17: Variación de β_{SORM} y Pf_{SORM} según la zona sísmica, Z, para las combinaciones de diseño propuestos - Distorsión. Fuente: Propia.

 $2.70 * 10^{-2}$ para $\alpha_D = 1.2$, $\alpha_L = 1$ y $\alpha_S = 1$ para el mismo factor de zona Z. El índice de confiabilidad obtenido para este caso es igual 1.93.

De los calculo anteriores vemos que el indice de confiabilidad de nuestra norma se encuentra apreciablemente cerca de lo recomendado por las normas internacionales, como ejemplo se puede mencionar la norma LRFD y las investigaciones de Ellingwood[36] los cuales indica un β del orden 1.75, por ello tomando en consideración solo el diseño por distorsión podemos recomendar que la combinación de diseño $\alpha_D = 1.2$, $\alpha_L = 1.1$ y $\alpha_S = 1$, es adecuada.

El modelo 02 utilizado en la calibración de distorsiones, se ve en la figura4.18:

En el pórtico mostrado en la figura siguiente se consideró que las columnas (1), (2) y la viga (3) son axialmente rígidas ($A = \infty$), con estas consideraciones obtenemos que el pórtico tendrá tres grados de libertad, un desplazamiento en la dirección del sentido X, paralelo a la aplicación de la fuerza sísmica y dos rotaciones que estarán en las juntas,(Aguiar Falconi)[41]. La estrutura anterior debe ser condensada a un

Figura 4.18: Estructura empleada en el análisis de distorsiones, modelo con 3 grados de libertad. Fuente: Propia.

solo grado de libertad de desplazamiento horizontal para poder realizar el analisis de distorsiones.

En el cálculo de las distorsiones, la rigidez de las columnas están directamente relacionadas con el desplazamiento lateral de la estructura. En función a lo anterior se ha calculado la rigidez de las columnas (1) y (2), necesarias para cumplir con los desplazamientos máximos indicados en la tabla3.10 de este trabajo. La resistencia requerida corresponde a los procedimientos indicados en la sección 3.4. Los parámetros se muestran en la tabla4.20.

En la Tabla4.21 se muestra los valores de la división entre el factor de sitio S y la Inercia $I_1 + I_2$ de cuerdo a las combinaciones de diseño y los factores de zona sísmica Z mencionados en la sección 3.4.

Con la definición de los parámetros anteriores, podemos definir la función de falla que gobernará la distorsión del segundo modelo, esta función se desarrolla sobre la comparación de la deriva que ocurre en el sistema ante las cargas sísmicas, con la deriva recomendada para que los elementos no sufran deflexiones excesivas, Para este condición la distorsión no deberá de exceder el limite de 0.007h.

Como primer paso para difinir la función de falla debemos de cálcular la matriz de rigidez del sistema, según lo indicado en la figura4.18:

$$K = \begin{bmatrix} \frac{24EI_1}{h^3} & \frac{-6EI_1}{h^2} & \frac{-6EI_2}{h^2} \\ \frac{-6EI_1}{h^2} & \frac{4EI_1}{h} + \frac{4EI_3}{L} & \frac{2EI_3}{L} \\ \frac{-6EI_2}{h^2} & \frac{2EI_3}{L} & \frac{4EI_3}{L} + \frac{4EI_2}{h} \end{bmatrix}$$
(4.1.28)

En la ecuación anterior reemplazamos los valores teniendo en cuenta que $I_1 = I_2 = I$, $I_3 = 1.5I$, L = 4.0, h = 3.0, obtenemos la siguiente matriz:

$$K = \begin{bmatrix} \frac{8}{9} & \frac{-2}{3} & \frac{-2}{3} \\ \frac{-2}{3} & \frac{17}{6} & \frac{3}{4} \\ \frac{-2}{3} & \frac{3}{4} & \frac{17}{6} \end{bmatrix} \cdot EI$$
(4.1.29)

Procedemos a condensar la matriz al grado de libertad en la dirección horizontal mediante las siguientes ecuaciones:

$$K_L = K_{aa} - K_{ab} \cdot K_{bb}^{-1} \cdot K_{ba} \tag{4.1.30}$$

$$K_{aa} = \frac{8}{9}EI \tag{4.1.31}$$

$$K_{ab} = \begin{bmatrix} \frac{-2}{3} & \frac{-2}{3} \end{bmatrix} \cdot EI \tag{4.1.32}$$

$$K_{ba} = \begin{bmatrix} \frac{-2}{3} \\ \frac{-2}{3} \end{bmatrix} \cdot EI \tag{4.1.33}$$

$$K_{bb} = \begin{bmatrix} \frac{17}{6} & \frac{3}{4} \\ \frac{3}{4} & \frac{17}{6} \end{bmatrix} \cdot EI$$
(4.1.34)

138

$$K_{bb}^{-1} = \begin{bmatrix} \frac{408}{1075} & \frac{-108}{1075} \\ \frac{-108}{1075} & \frac{408}{1075} \end{bmatrix} \cdot \frac{1}{EI}$$
(4.1.35)

Realizamos el triple producto matricial:

$$K_{L} = \frac{8}{9}EI - \begin{bmatrix} \frac{-2}{3} & \frac{-2}{3} \end{bmatrix} \cdot EI \cdot \begin{bmatrix} \frac{408}{1075} & \frac{-108}{1075} \\ \frac{-108}{1075} & \frac{408}{1075} \end{bmatrix} \cdot \frac{1}{EI} \cdot \begin{bmatrix} \frac{-2}{3} \\ \frac{-2}{3} \end{bmatrix} \cdot EI$$
(4.1.36)

$$K_{L} = \frac{8}{9}EI - \begin{bmatrix} \frac{-2}{3} & \frac{-2}{3} \end{bmatrix} \cdot \begin{bmatrix} \frac{-8}{43} \\ \frac{-8}{43} \end{bmatrix} \cdot EI$$
(4.1.37)

$$K_L = \frac{8}{9}EI - \frac{32}{129}EI = \frac{248}{387}EI$$
(4.1.38)

Conociendo el valor de la matriz de rigidez lateral del sistema, obtenemos la función de falla siguiendo el mismo procedimiento descrito en las ecuaciones (5.6.1) al (5.6.7), de esta forma obtenmos la funcion de falla para el segundo modelo de distorsión:

$$\Delta = K^{-1}F \tag{4.1.39}$$

$$F = \frac{ZUCS}{R}P = \frac{ZUCS}{R}(CM + 0.5CV)$$
(4.1.40)

Para conocer la deriva del sistema reemplazamos los valores anteriores, con lo cual la distorsión estará definida por:

$$\Delta = \frac{387 \cdot ZUCS}{248 \cdot EIR} (CM + 0.5CV)$$
(4.1.41)

Tomando los valores de U = 1.5, C = 2.5, R = 8, tenemos que la distorsión será:

$$\Delta = \frac{1451.25(ZS)}{1984(EI)}(CM + 0.5CV)$$
(4.1.42)

139

La función de falla para el análisis de la deflexión será:

$$G = 0.007 - \frac{1451.25}{1984 \cdot 15000\sqrt{X(3)}} [X(1) + 0.5 \cdot X(2)] \frac{ZS}{I}$$
(4.1.43)

Se efectuó un análisis FORM y SORM para cada caso. Los resultados del análisis de confiabilidad se muestran en la tabla4.23.

$\alpha_D = 1.25; \alpha_L = 1.25; \alpha_S = 1$					
Ζ	β FORM	Pf FORM	β SORM	Pf SORM	
0.45	2.078610809	1.882657E-02	1.979179308	2.389791E-02	
0.35	2.222681163	1.311865E-02	2.122479479	1.689875E-02	
0.25	2.467325954	6.806319E-03	2.365834405	8.994744E-03	
0.10	3.478780146	2.518508E-04	3.385134925	3.557164E-04	
	α	$\alpha_D = 1.25; \alpha_L = 1$	$.15; \alpha_{S} = 1$		
Z	β FORM	Pf FORM	β SORM	Pf SORM	
0.45	1.940655006	2.615007E-02	1.842323435	3.271393E-02	
0.35	2.052524299	2.005937E-02	1.953320878	2.539079E-02	
0.25	2.245679409	1.236227E-02	2.145299071	1.596447E-02	
0.10	3.095753861	9.815662E-04	2.995357561	1.370616E-03	
	••••••••••••••••••••••••••••••••••••••	$\alpha_D = 1.2; \alpha_L = 1$	$1; \alpha_S = 1$		
Z	β FORM	Pf FORM	β SORM	Pf SORM	
0.45	1.886242815	2.963112E-02	1.788336987	3.686083E-02	
0.35	1.947017033	2.576635E-02	1.848599945	3.225780E-02	
0.25	2.083917143	1.858385E-02	1.984453518	2.360265E-02	
0.10	2.516464429	5.926943E-03	2.414814270	7.871618E-03	
$\alpha_D = 1.2; \alpha_L = 1; \alpha_S = 1$					
Z	β FORM	Pf FORM	β SORM	Pf SORM	
0.45	1.840629934	3.283790E-02	1.763161094	4.065274E-02	
0.35	1.896315710	2.895916E-02	1.798373175	3.605895E-02	
0.25	1.968851834	2.448505E-02	1.870295796	3.072138E-02	
0.10	2.278911139	1.133617E-02	2.178348493	1.469005E-02	

Tabla 4.23: Indice de confiabilidad y probabilidad de falla para Distorsiones modelo 02. Fuente: Propia.

Las Figuras 4.19 y 4.20 muestran la variación de los índices de confiabilidad y sus respectivas probabilidades de falla mostrados en la tabla4.23, para los métodos FORM y SORM.

Como puede observarse mientras mayor es el factor de zona sísmica Z, menor es el índice de confiabilidad y mayor la probabilidad de falla relacionada. Además puede verificarse que la probabilidad de falla aumenta considerablemente mientras meno-

Figura 4.19: Variación de β_{FORM} y Pf_{FORM} según la zona sísmica, Z, para las combinaciones de diseño propuestos - Distorsión modelo 02. Fuente: Propia.

Figura 4.20: Variación de β_{SORM} y Pf_{SORM} según la zona sísmica, Z, para las combinaciones de diseño propuestos - Distorsión modelo 02. Fuente: Propia.

res son los factores de amplificación de cargas y mayor es el factor de zona sísmica, Z.

Para un factor de zona Z igual a 0.45, que es el valor máximo y para los casos en los que $\alpha_D = 1.25$, $\alpha_L = 1.25$ y $\alpha_S = 1$; y, $\alpha_D = 1.2$, $\alpha_L = 1.1$ y $\alpha_S = 1$ la probabilidad de falla obtenida se encuentran separadas estando en el orden de 1.88×10^{-2} y 2.96×10^{-2} tal como se aprecia en la Figura 4.19. Para estos casos, los β respectivos son 2.07 y 1.88. Sin embargo la probabilidad de falla aumenta hasta el orden de

 $3.28 * 10^{-2}$ para $\alpha_D = 1.2$, $\alpha_L = 1$ y $\alpha_S = 1$ para el mismo factor de zona Z. El índice de confiabilidad obtenido para este caso es igual 1.84.

De los calculo anteriores vemos que el indice de confiabilidad de nuestra norma se encuentra apreciablemente cerca de lo recomendado por las normas internacionales, como ejemplo se puede mencionar la norma LRFD y las investigaciones de Ellingwood[36] los cuales indica un β del orden 1.75, por ello tomando en consideración solo el diseño por distorsión podemos recomendar que la combinación de diseño $\alpha_D = 1.2$, $\alpha_L = 1.1$ y $\alpha_S = 1$, es adecuada.

4.1.7. Análisis de Confiabilidad de la COMB. 04 - ELEE.

4.1.7.1. Análisis de Confiabilidad para Distorsiones - COMB. 04.

Para el análisis de la combinación de diseño 04, se usó el modelo matemático desarrollado en la sección 5.6.1 de este trabajo. Los parámetros de diseño se muestran en la tabla4.24:

Parámetro	CM (kg/m2)	CV (kg/m2)	hn (m)	L (m)	f'c (kg/cm2)	fy (kg/cm2)
Valor	300	0.00	3.50	4.00	210	4200
Parámetro	Ancho trib.(m)	CM (kg/m)	CV (kg/m)	Categoría U	Factor C	Factor R
Valor	5.00	1500.00	0.00	1.50	2.5	8

Tabla 4.24: Parámetros para el diseño de distorsión. Fuente: Propia.

En la Tabla4.25 se muestra los valores de la división entre el factor de sitio S y la Inercia $I_1 + I_2$ de cuerdo a las combinaciones de diseño y los factores de zona sísmica Z.

La función de falla para esta combinación de diseño será:

$$G = 0.007 \cdot h_n - \frac{1.5 \cdot 2.5 \cdot h_n^3}{8 \cdot 24 \cdot 15000 \sqrt{X(3)}} [X(1)] \frac{ZS}{I}$$
(4.1.44)

Se efectuó un análisis FORM y SORM para cada caso. Los resultados del análisis

Factor de Zona	Valores de ZS/I, para distintas combinaciones de carga					
Z	$\alpha_D = 1; \alpha_S = 1$	$\alpha_D = 0.95; \alpha_S = 1$	$\alpha_D = 0.9; \alpha_S = 1$	$\alpha_D = 0.85; \alpha_S = 1$		
0.45	0.00010299607	0.00010363550	0.00010390100	0.00010413809		
0.35	0.00010237856	0.00010318904	0.00010366948	0.00010393658		
0.25	0.00010127722	0.00010238446	0.00010313153	0.00010366785		
0.10	0.00009582837	0.00009831233	0.00010129745	0.00010245370		

Tabla 4.25: Valores de $ZS/(I_1 + I_2)$ requeridas según requisitos de distorsión. Fuente: Propia.

de confiabilidad se muestran en la tabla4.26.

	$\alpha_D = 1; \alpha_S = 1$					
Z	β FORM	Pf FORM	β SORM	Pf SORM		
0.45	1.886588848	2.960782E-02	1.871903184	3.061000E-02		
0.35	1.931105577	2.673500E-02	1.916440601	2.765452E-02		
0.25	2.010452182	2.219168E-02	1.995840401	2.297565E-02		
0.10	2.401053752	8.173967E-03	2.386799696	8.497874E-03		
		$\alpha_D = 0.95; a$	$\alpha_{\rm S} = 1$			
Z	β FORM	Pf FORM	β SORM	Pf SORM		
0.45	1.840478061	3.284904E-02	1.825756807	3.394345E-02		
0.35	1.872674548	3.055667E-02	1.857980714	3.158588E-02		
0.25	1.930680322	2.676130E-02	1.916018203	2.768139E-02		
0.10	2.223518489	1.309043E-02	2.209089943	1.358419E-02		
	<u></u>	$\alpha_D = 0.9; \alpha$	s = 1			
Z	β FORM	Pf FORM	β SORM	Pf SORM		
0.45	1.821329491	3.427839E-02	1.806597428	3.541254E-02		
0.35	1.838027402	3.302918E-02	1.823322519	3.412728E-02		
0.25	1.87682149	3.027128E-02	1.86212089	3.129303E-02		
0.10	2.008995421	2.226881E-02	1.994387721	2.305485E-02		
$\alpha_D = 0.85; \alpha_S = 1$						
Z	β FORM	Pf FORM	β SORM	Pf SORM		
0.45	1.804229075	3.559770E-02	1.789477927	3.676894E-02		
0.35	1.818763281	3.447378E-02	1.804028548	3.561342E-02		
0.25	1.838144959	3.302052E-02	1.823436536	3.411865E-02		
0.10	1.925689567	2.707157E-02	1.911036703	2.799993E-02		

Tabla 4.26: Indice de confiabilidad y probabilidad de falla para Distorsiones. Fuente: Propia.

Las Figuras 4.21 y 4.22 muestran la variación de los índices de confiabilidad y sus respectivas probabilidades de falla mostrados en la tabla4.26, para los métodos FORM y SORM.

Como puede observarse mientras mayor es el factor de zona sísmica Z, menor es el índice de confiabilidad y mayor la probabilidad de falla relacionada. Además puede

Figura 4.21: Variación de β_{FORM} y Pf_{FORM} según la zona sísmica, Z, para las combinaciones de diseño propuestos - Distorsión. Fuente: Propia.

Figura 4.22: Variación de β_{SORM} y Pf_{SORM} según la zona sísmica, Z, para las combinaciones de diseño propuestos - Distorsión. Fuente: Propia.

verificarse que la probabilidad de falla aumenta considerablemente mientras menores son los factores de amplificación de cargas y mayor es el factor de zona sísmica, Z.

Para un factor de zona Z igual a 0.45, que es el valor máximo y para los casos en los que $\alpha_D = 0.95$ y $\alpha_S = 1$; y, $\alpha_D = 0.9$ y $\alpha_S = 1$ la probabilidad de falla obtenida se encuentran separadas estando en el orden de $3.34 * 10^{-2}$ y $3.48 * 10^{-2}$ tal como se aprecia en la Figura 4.21. Para estos casos, los β respectivos son 1.83 y 1.81. Sin embargo la probabilidad de falla aumenta hasta el orden de $3.62 * 10^{-2}$ para $\alpha_D = 0.85$ y $\alpha_S = 1$ para el mismo factor de zona Z. El índice de confiabilidad obtenido para este caso es igual 1.79.

De los calculo anteriores vemos que el indice de confiabilidad de nuestra norma se encuentra apreciablemente cerca de lo recomendado por las normas internacionales, como ejemplo se puede mencionar la norma LRFD y las investigaciones de Ellingwood[36] los cuales indica un β del orden 1.75, por ello tomando en consideración solo el diseño por distorsión podemos recomendar que la combinación de diseño $\alpha_D = 0.90$ y $\alpha_S = 1$, es adecuada.

Para el análisis de la combinación de diseño 04 en el modelo 02, se usó el modelo matemático desarrollado en la sección 5.6.1 de este trabajo. Los parámetros de diseño se muestran en la tabla4.24. En la Tabla4.25 se muestra los valores de la división entre el factor de sitio S y la Inercia I de cuerdo a las combinaciones de diseño y los factores de zona sísmica Z.

La función de falla para esta combinación de diseño en el modelo 02 será:

$$G = 0.007h - \frac{1451.25}{1984 \cdot 15000\sqrt{X(3)}} [X(1)] \frac{ZS}{I}$$
(4.1.45)

Se efectuó un análisis FORM y SORM para cada caso. Los resultados del análisis de confiabilidad se muestran en la tabla4.27.

Las Figuras 4.23 y 4.24 muestran la variación de los índices de confiabilidad y sus respectivas probabilidades de falla mostrados en la tabla4.27, para los métodos *FORM* y *SORM*.

$\alpha_D = 1; \alpha_S = 1$					
Z	β FORM	Pf FORM	β SORM	Pf SORM	
0.45	1.840256658	3.286528E-02	1.825547512	3.395922E-02	
0.35	1.885064743	2.971055E-02	1.870393632	3.071459E-02	
0.25	1.964944499	2.471033E-02	1.950313001	2.556941E-02	
0.10	2.358432010	9.176161E-03	2.344129505	9.535774E-03	
		$\alpha_D = 0.95; \alpha$	$t_S = 1$		
Z	β FORM	Pf FORM	β SORM	Pf SORM	
0.45	1.793849937	3.641856E-02	1.779119432	3.761009E-02	
0.35	1.826252431	3.390612E-02	1.811538219	3.502879E-02	
0.25	1.884636678	2.973945E-02	1.869938786	3.074616E-02	
0.10	2.179530907	1.464613E-02	2.165060689	1.519152E-02	
		$\alpha_D = 0.9; \alpha$	s = 1		
Z	β FORM	Pf FORM	β SORM	Pf SORM	
0.45	1.774580219	3.798361E-02	1.759826816	3.921859E-02	
0.35	1.791383717	3.661587E-02	1.776650169	3.781291E-02	
0.25	1.830426118	3.359312E-02	1.815714786	3.470707E-02	
0.10	1.963477790	2.479534E-02	1.948843551	2.565706E-02	
$\alpha_D = 0.85; \alpha_S = 1$					
Z	β FORM	Pf FORM	β SORM	Pf SORM	
0.45	1.757372476	3.942717E-02	1.742616669	4.070030E-02	
0.35	1.771997851	3.819746E-02	1.757254383	3.943723E-02	
0.25	1.79150202	3.660639E-02	1.776768065	3.780320E-02	
0.10	1.879612989	3.008042E-02	1.864920344	3.109629E-02	

Tabla 4.27: Indice de confiabilidad y probabilidad de falla para Distorsiones modelo 02. Fuente: Propia.

Figura 4.23: Variación de β_{FORM} y Pf_{FORM} según la zona sísmica, Z, para las combinaciones de diseño propuestos - Distorsión modelo 02. Fuente: Propia.

Como puede observarse mientras mayor es el factor de zona sísmica Z, menor es el índice de confiabilidad y mayor la probabilidad de falla relacionada. Además puede verificarse que la probabilidad de falla aumenta considerablemente mientras meno-

Figura 4.24: Variación de β_{SORM} y Pf_{SORM} según la zona sísmica, Z, para las combinaciones de diseño propuestos - Distorsión modelo 02. Fuente: Propia.

res son los factores de amplificación de cargas y mayor es el factor de zona sísmica, Z.

Para un factor de zona Z igual a 0.45, que es el valor máximo y para los casos en los que $\alpha_D = 0.95$ y $\alpha_S = 1$; y, $\alpha_D = 0.9$ y $\alpha_S = 1$ la probabilidad de falla obtenida se encuentran separadas estando en el orden de $3.64 * 10^{-2}$ y $3.80 * 10^{-2}$ tal como se aprecia en la Figura 4.23. Para estos casos, los β respectivos son 1.79 y 1.77. Sin embargo la probabilidad de falla aumenta hasta el orden de $3.94 * 10^{-2}$ para $\alpha_D = 0.85$ y $\alpha_S = 1$ para el mismo factor de zona Z. El índice de confiabilidad obtenido para este caso es igual 1.75.

De los calculo anteriores vemos que el indice de confiabilidad de nuestra norma se encuentra apreciablemente cerca de lo recomendado por las normas internacionales, como ejemplo se puede mencionar la norma LRFD y las investigaciones de Ellingwood[36] los cuales indica un β del orden 1.75, por ello tomando en consideración solo el diseño por distorsión podemos recomendar que la combinación de diseño $\alpha_D = 0.90$ y $\alpha_S = 1$, es adecuada.

4.2. Sensitividad de las Variables Básicas.

4.2.1. Variables Básicas Involucradas.

La variabilidad de las variables básicas involucradas en cada problema de diseño, sea flexión, corte o deflexiones es distinta y están denotadas por X(1) para carga muerta, X(2) para carga viva, X(3) para el esfuerzo de compresión del concreto y X(4) para el esfuerzo de fluencia dela cero.

Además estos coeficientes de sensitividad influyen en el cálculo de la probabilidad de falla en mayor o menor grado, según el factor de resistencia y la combinación de factores de amplificación de carga. Por estos motivos se ha efectuado una inspección de los coeficientes de sensitividad que el programa elaborado en *MatLab* ha determinado para los dos métodos de cálculo FORM y SORM. Los resultados se presentan en las secciones siguientes.

4.2.2. Análisis de Sensitividad de la COMB. 01 - ELRS.

4.2.2.1. Sensitividad de las Variables Básicas en Flexión.

Los coeficientes de sensitividad fueron obtenidos mediante el programa elaborado en MatLab, estos valores corresponden al vector Alfa - z que este programa muestra como resultados del análisis de confiabilidad, tal como se puede observar en el Anexo E.

Con el programa mencionado anteriormente se calculó los coeficientes de sensitividad para cada una de las variables básicas involucras en el modelo de flexión, estos resultados se pueden apreciar en la tabla4.28 y la tabla4.29.

Los gráficos generados a partir de los cuadros anteriores, permiten definir el rango de importancia en las variables básicas analizadas:

Variable Basica X(1), Carga Muerta					
ø	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$	
1.00	0.154632285	0.161707247	0.168110781	0.177263283	
0.90	0.137505642	0.14300641	0.148016123	0.154927452	
0.80	0.122514678	0.126844461	0.130666286	0.135975853	
0.70	0.114668012	0.125349876	0.115459711	0.119574265	
0.60	0.126010384	0.10938891	0.118588416	0.11017799	
	V	ariable Basica X(2	2), Carga Viva		
¢	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$	
1.00	0.924546884	0.922250473	0.919944712	0.916305093	
0.90	0.928939033	0.927763312	0.926433966	0.924456645	
0.80	0.930897196	0.930541815	0.930079018	0.929226403	
0.70	0.931148552	0.930940962	0.931026316	0.931028474	
0.60	0.931354876	0.930904358	0.93147305	0.930829347	
	Variable Basica	X(3), Resistencia	a a compresion de	l concreto	
ø	$\alpha_D = 1.4; \alpha_I = 1.7$	$\alpha_{\rm D} = 1.3; \alpha_{\rm I} = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$	
		-0,			
1.00	0.013182034	0.012872335	0.012643658	0.012386841	
1.00 0.90	0.013182034 0.014267041	0.012872335 0.013857715	0.012643658 0.013536654	0.012386841 0.013167769	
1.00 0.90 0.80	0.013182034 0.014267041 0.015794912	0.012872335 0.013857715 0.015279908	0.012643658 0.013536654 0.014878836	0.012386841 0.013167769 0.014393247	
1.00 0.90 0.80 0.70	0.013182034 0.014267041 0.015794912 0.01805753	0.012872335 0.013857715 0.015279908 0.017597129	0.012643658 0.013536654 0.014878836 0.016802332	0.012386841 0.013167769 0.014393247 0.016185898	
1.00 0.90 0.80 0.70 0.60	0.013182034 0.014267041 0.015794912 0.01805753 0.021688294	0.012872335 0.013857715 0.015279908 0.017597129 0.020410921	0.012643658 0.013536654 0.014878836 0.016802332 0.019944201	0.012386841 0.013167769 0.014393247 0.016185898 0.018919639	
1.00 0.90 0.80 0.70 0.60	0.013182034 0.014267041 0.015794912 0.01805753 0.021688294 Variable B:	0.012872335 0.013857715 0.015279908 0.017597129 0.020410921 asica X(4), Esfuer	0.012643658 0.013536654 0.014878836 0.016802332 0.019944201 zo de fluencia del	0.012386841 0.013167769 0.014393247 0.016185898 0.018919639 acero	
1.00 0.90 0.80 0.70 0.60	$\begin{array}{c} 0.013182034\\ \hline 0.014267041\\ \hline 0.015794912\\ \hline 0.01805753\\ \hline 0.021688294\\ \hline {\bf Variable Bi}\\ \pmb{\alpha}_D=1.4; \pmb{\alpha}_L=1.7 \end{array}$	$\begin{array}{c} 0.012872335\\ 0.013857715\\ 0.015279908\\ 0.017597129\\ 0.020410921\\ \textbf{asica X(4), Esfuer:}\\ \alpha_D=1.3; \alpha_L=1.7 \end{array}$	$\begin{array}{c} 0.012643658\\ 0.013536654\\ 0.014878836\\ 0.016802332\\ 0.019944201\\ \textbf{zo de fluencia del}\\ \boldsymbol{\alpha}_{D}=1.3; \boldsymbol{\alpha}_{L}=1.6 \end{array}$	$\begin{array}{c} 0.012386841\\ 0.013167769\\ 0.014393247\\ 0.016185898\\ 0.018919639\\ \textbf{acero}\\ \textbf{\alpha}_{D}=1.2; \textbf{\alpha}_{L}=1.6 \end{array}$	
1.00 0.90 0.80 0.70 0.60 \$	$\begin{array}{c} 0.013182034\\ \hline 0.014267041\\ \hline 0.015794912\\ \hline 0.01805753\\ \hline 0.021688294\\ \hline {\bf Variable Bi}\\ \pmb{\alpha}_D=1.4; \pmb{\alpha}_L=1.7\\ \hline 0.348034695\\ \end{array}$	$\begin{array}{c} 0.012872335\\ 0.013857715\\ 0.015279908\\ 0.017597129\\ 0.020410921\\ \textbf{asica X(4), Esfuer:}\\ \alpha_D = 1.3; \alpha_L = 1.7\\ 0.350911861 \end{array}$	$\begin{array}{c} 0.012643658\\ 0.013536654\\ 0.014878836\\ 0.016802332\\ 0.019944201\\ \textbf{zo de fluencia del}\\ \pmb{\alpha}_{D}=1.3; \pmb{\alpha}_{L}=1.6\\ 0.353950039 \end{array}$	$\begin{array}{c} 0.012386841\\ 0.013167769\\ 0.014393247\\ 0.016185898\\ 0.018919639\\ \textbf{acero}\\ \pmb{\alpha_{D}=1.2; \alpha_{L}=1.6}\\ 0.358900085 \end{array}$	
↓ 1.00 0.90 0.80 0.70 0.60 ↓ 0.60 ↓ 1.00 0.90	$\begin{array}{c} 0.013182034\\ 0.014267041\\ 0.015794912\\ 0.01805753\\ 0.021688294\\ \hline {\bf Variable Bi}\\ \pmb{\alpha}_D=1.4; \pmb{\alpha}_L=1.7\\ 0.348034695\\ 0.343454398\\ \end{array}$	$\begin{array}{c} 0.012872335\\ 0.013857715\\ 0.015279908\\ 0.017597129\\ 0.020410921\\ \textbf{asica X(4), Esfuer:}\\ \alpha_D = 1.3; \alpha_L = 1.7\\ 0.350911861\\ 0.344401463\\ \end{array}$	$\begin{array}{c} 0.012643658\\ 0.013536654\\ 0.014878836\\ 0.016802332\\ 0.019944201\\ \textbf{zo de fluencia del}\\ \pmb{\alpha}_{D}=1.3; \pmb{\alpha}_{L}=1.6\\ 0.353950039\\ 0.345872944 \end{array}$	$\begin{array}{c} 0.012386841\\ 0.013167769\\ 0.014393247\\ 0.016185898\\ 0.018919639\\ \textbf{acero}\\ \pmb{\alpha_{D}=1.2; \alpha_{L}=1.6}\\ 0.358900085\\ 0.348143657\\ \end{array}$	
1.00 0.90 0.80 0.70 0.60 1.00 0.90 0.80	$\begin{array}{c} 0.013182034\\ \hline 0.014267041\\ \hline 0.015794912\\ \hline 0.01805753\\ \hline 0.021688294\\ \hline {\bf Variable Bi}\\ \hline \pmb{\alpha}_D=1.4; \ \pmb{\alpha}_L=1.7\\ \hline 0.348034695\\ \hline 0.343454398\\ \hline 0.343760214\\ \end{array}$	$\begin{array}{c} 0.012872335\\ 0.013857715\\ 0.015279908\\ 0.017597129\\ 0.020410921\\ \textbf{asica X(4), Esfuer:}\\ \alpha_D = 1.3; \alpha_L = 1.7\\ 0.350911861\\ 0.344401463\\ 0.34317479\\ \end{array}$	$\begin{array}{c} 0.012643658\\ 0.013536654\\ 0.014878836\\ 0.016802332\\ 0.019944201\\ \textbf{zo de fluencia del}\\ \pmb{\alpha_D=1.3; \alpha_L=1.6}\\ 0.353950039\\ 0.345872944\\ 0.343013065\\ \end{array}$	$\begin{array}{c} 0.012386841\\ 0.013167769\\ 0.014393247\\ 0.016185898\\ 0.018919639\\ \textbf{acero}\\ \textbf{\alpha}_{D}=1.2; \textbf{\alpha}_{L}=1.6\\ 0.358900085\\ 0.348143657\\ 0.343280778\\ \end{array}$	
1.00 0.90 0.80 0.70 0.60 \$	$\begin{array}{c} 0.013182034\\ \hline 0.014267041\\ \hline 0.015794912\\ \hline 0.01805753\\ \hline 0.021688294\\ \hline {\bf Variable Ba}\\ \hline \pmb{\alpha}_D = 1.4; \pmb{\alpha}_L = 1.7\\ \hline 0.348034695\\ \hline 0.343454398\\ \hline 0.343760214\\ \hline 0.345669708\\ \end{array}$	$\begin{array}{c} 0.012872335\\ \hline 0.013857715\\ \hline 0.015279908\\ \hline 0.017597129\\ \hline 0.020410921\\ \hline \textbf{asica X(4), Esfuer:}\\ \hline \alpha_D = 1.3; \alpha_L = 1.7\\ \hline 0.350911861\\ \hline 0.344401463\\ \hline 0.34317479\\ \hline 0.342529815\\ \end{array}$	$\begin{array}{c} 0.012643658\\ 0.013536654\\ 0.014878836\\ 0.016802332\\ 0.019944201\\ \textbf{zo de fluencia del}\\ \pmb{\alpha}_{D}=\textbf{1.3}; \pmb{\alpha}_{L}=\textbf{1.6}\\ 0.353950039\\ 0.345872944\\ 0.343013065\\ 0.345798692\\ \end{array}$	$\begin{array}{c} 0.012386841\\ 0.013167769\\ 0.014393247\\ 0.016185898\\ 0.018919639\\ \textbf{acero}\\ \textbf{\alpha}_{D}=1.2; \textbf{\alpha}_{L}=1.6\\ 0.358900085\\ 0.348143657\\ 0.343280778\\ 0.344421243\\ \end{array}$	

Tabla 4.28: Coeficientes de sensitividad para el método FORM. Fuente: Propia.

Figura 4.25: Variación de los coeficientes de sensitividad X(1) y X(2), método FORM - flexión. Fuente: Propia.

De los gráficos mostrados anteriormente podemos definir que la variable básica X(2), es la que presenta un mayor índice de sensitividad, por ello es la que presenta una

4.2. Sensitividad de las Variables Básicas.

	Variable Basica X(1), Carga Muerta					
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$		
1.00	0.154632431	0.161707408	0.168110955	0.177263473		
0.90	0.137505801	0.143006534	0.148016265	0.154927595		
0.80	0.122513595	0.1268448	0.13066657	0.135976027		
0.70	0.114661014	0.125350642	0.115454689	0.119574465		
0.60	0.126010787	0.10934269	0.118587809	0.110142784		
	V	ariable Basica X(2	2), Carga Viva			
ø	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$		
1.00	0.924546735	0.92225031	0.919944538	0.916304904		
0.90	0.92893886	0.92776318	0.926433818	0.924456499		
0.80	0.93089846	0.930541429	0.930078701	0.929226214		
0.70	0.931157264	0.930940085	0.931032537	0.931028233		
0.60	0.931354417	0.930964898	0.931473775	0.930875185		
	Variable Basica	X(3), Resistencia	a a compresion de	l concreto		
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D=1.3; \alpha_L=1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$		
1.00	0.013182069	0.012872369	0.012643692	0.012386875		
0.90	0.014267081	0.01385775	0.013536689	0.013167804		
0.80	0.015794799	0.015279975	0.014878894	0.01439329		
0.70	0.018056458	0.017597266	0.01680163	0.016185952		
0.60	0.0216884	0.020402331	0.019944132	0.018913626		
	Variable Basica $X(4)$, Esfuerzo de fluencia del acero					
Ø	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$		
1.00	0.348035026	0.350912213	0.353950408	0.358900472		
0.90	0.343454799	0.344401766	0.345873277	0.348143981		
0.80	0.343757181	0.343175709	0.343013814	0.343281221		
0.70	0.345648617	0.342531913	0.345783655	0.344421821		

Tabla 4.29: Coeficientes de sensitividad para el método SORM. Fuente: Propia.

Figura 4.26: Variación de los coeficientes de sensitividad X(3) y X(4), método FORM - flexión. Fuente: Propia.

mayor importancia en el calculo de la confiabilidad en este estado de flexión, por otro lado la variable básica X(3) es la que presenta el menor indice.

Figura 4.27: Variación de los coeficientes de sensitividad $X(1) \ge X(2)$, método SORM - flexión. Fuente: Propia.

Figura 4.28: Variación de los coeficientes de sensitividad X(3) y X(4), método SORM - flexión. Fuente: Propia.

El valor del coeficiente de sensitividad nos indica que variables básicas necesitan mayor información estadística y cuales podrían ser reemplazados por valores determinísticos, en nuestro caso para el análisis en flexión se ve claramente que la variable básica X(2), es la de mayor importancia y la variable básica X(3), podría ser reemplazado por un valor determinístico debidamente elegido.
4.2.2.2. Sensitividad de las Variables Básicas en Corte.

Como es sabido la resistencia a compresión del concreto esta directamente relacionada con al resistencia al cortante, por ello la sensibilidad de esta variable sera la que presente el mayor coeficiente, como se muestra en la tabla4.30 y la Tabla4.31.

	Variable Basica X(1), Carga Muerta				
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$	
1.00	0.160735298	0.167955548	0.174203838	0.182849092	
0.95	0.150940082	0.157979998	0.163860303	0.171760644	
0.90	0.140238457	0.147624222	0.153496788	0.161045357	
0.85	0.127459318	0.13592486	0.142342083	0.150122775	
0.80	0.112889257	0.121742546	0.129066313	0.13798003	
	v	ariable Basica X(2	2), Carga Viva		
ø	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$	
1.00	0.616118467	0.638806027	0.653112691	0.666173985	
0.95	0.572643295	0.60543484	0.626838144	0.648035562	
0.90	0.509074141	0.554526038	0.585468263	0.617247132	
0.85	0.41548813	0.477478934	0.522625459	0.56832916	
0.80	0.324413421	0.376720047	0.426728593	0.494118406	
	Variable Basica	X(3), Resistencia	a a compresion de	concreto	
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$	
1.00	0.771078594	0.750811424	0.73695104	0.723034184	
0.95	0.805789518	0.780058315	0.76172419	0.741989347	
0.90	0.849221228	0.81896762	0.796031186	0.770110623	
0.85	0.900624081	0.868065838	0.840595837	0.808990184	
0.80	0.939154912	0.918292306	0.89512267	0.858375508	

Tabla 4.30: Coeficientes de sensitividad para el método FORM. Fuente: Propia.

	Variable Basica X(1), Carga Muerta				
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$	
1.00	0.160735317	0.167955586	0.174203889	0.18284916	
0.95	0.150940072	0.15798001	0.16386033	0.17176069	
0.90	0.140238409	0.1476242	0.153496785	0.161045377	
0.85	0.127459223	0.135924796	0.142342043	0.150122762	
0.80	0.11288912	0.121742432	0.129066223	0.137979975	
	V	ariable Basica X(2	2), Carga Viva		
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$	
1.00	0.61611755	0.638805137	0.65311182	0.666173129	
0.95	0.572642329	0.60543391	0.62683724	0.648034684	
0.90	0.509073122	0.554525054	0.58546731	0.617246216	
0.85	0.41548709	0.4774779	0.522624449	0.568328189	
0.80	0.324412434	0.376719021	0.426727552	0.494117379	
	Variable Basica	X(3), Resistencia	a a compresion de	l concreto	
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$	
1.00	0.771079323	0.750812172	0.7369518	0.723034956	
0.95	0.805790207	0.780059034	0.761724929	0.741990103	
0.90	0.849221846	0.81896829	0.796031888	0.770111353	
0.85	0.900624575	0.868066417	0.840596471	0.808990869	
0.80	0.939155269	0.918292742	0.895123179	0.858376108	

Tabla 4.31: Coeficientes de sensitividad para el método SORM. Fuente: Propia.

Los gráficos generados a partir de los cuadros anteriores, permiten definir el rango de importancia en las variables básicas analizadas:

Figura 4.29: Variación de los coeficientes de sensitividad X(1) y X(2), método FORM - Corte. Fuente: Propia.

Figura 4.30: Variación de los coeficientes de sensitividad X(3) y X(4), método FORM - Corte. Fuente: Propia.

De los gráficos mostrados anteriormente podemos definir que la variable básica X(3), es la que presenta un mayor índice de sensitividad, por ello es la que presenta una mayor importancia en el calculo de la confiabilidad en este estado de flexión, por otro lado la variable básica X(1) es la que presenta el menor indice.

Figura 4.31: Variación de los coeficientes de sensitividad X(1) y X(2), método SORM - Corte. Fuente: Propia.

Figura 4.32: Variación de los coeficientes de sensitividad X(3) y X(4), método SORM - Corte. Fuente: Propia.

El valor del coeficiente de sensitividad nos indica que variables básicas necesitan mayor información estadística y cuales podrían ser reemplazados por valores determinísticos, en nuestro caso para el análisis en corte se ve claramente que la variable básica X(3), es la de mayor importancia y la variable básica X(1), podría ser reemplazado por un valor determinístico debidamente elegido.

4.2.2.3. Sensitividad de las Variables Básicas en Deflexión.

Al igual que en las secciones anteriores (flexión y corte) se determino los coeficientes de sensibilidad para el diseño por delexiones, para este modelo se pude ver que la resistencia a compresión del concreto también influye en al respuesta del indice de confiabilidad obtenido, esto puede deberse a que el momento de inercia efectiva *Ie* esta relacionada con la resistencia del concreto. Es preciso mencionar que para este análisis no se consideró la variable básica relacionada con el acero de refuerzo ya que al contemplar esta variable la función de falla, esta no genera convergencia en el calculo del indice de confiabilidad. Los resultados de este análisis se ven en la tabla4.32 y la tabla4.33.

	Variable Basica X(1), Carga Muerta					
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$		
1.00	0.203442436	0.217033883	0.217033883	0.218050741		
0.90	0.200697968	0.21559435	0.21559435	0.216698734		
0.80	0.19715316	0.213837663	0.213837663	0.21504909		
0.70	0.192510332	0.211637149	0.211637149	0.212984298		
0.60	0.186044387	0.208780562	0.208780562	0.210309422		
	V	ariable Basica X(2	2), Carga Viva	······································		
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$		
1.00	0.540031361	0.581207214	0.581207214	0.58337457		
0.90	0.528483799	0.577952886	0.577952886	0.580469393		
0.80	0.515786169	0.573668584	0.573668584	0.576660882		
0.70	0.497244784	0.567781009	0.567781009	0.571456395		
0.60	0.468627504	0.559200688	0.559200688	0.563929835		
	Variable Basica	X(3), Resistencia	a a compresion de	l concreto		
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D=1.3; \alpha_L=1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$		
1.00	0.816686785	0.784279585	0.784279585	0.782386085		
0.90	0.8248789	0.787076577	0.787076577	0.78491843		
0.80	0.833723731	0.790681864	0.790681864	0.788172643		
0.70	0.845983095	0.795508921	0.795508921	0.792512005		
0.60	0.863583087	0.80231245	0.80231245	0.798594446		

Tabla 4.32: Coeficientes de sensitividad para el método FORM. Fuente: Propia.

Los gráficos generados a partir de los cuadros anteriores, permiten definir el rango de importancia en las variables básicas analizadas:

De los gráficos mostrados anteriormente podemos definir que la variable básica X(3), es la que presenta un mayor índice de sensitividad, por ello es la

Variable Basica X(1), Carga Muerta				
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$
1.00	0.203442209	0.21703372	0.21703372	0.218050581
0.90	0.200697725	0.215594181	0.215594181	0.21669857
0.80	0.197152899	0.213837488	0.213837488	0.21504892
0.70	0.192510045	0.211636964	0.211636964	0.212984119
0.60	0.186044061	0.208780364	0.208780364	0.210309231
	V	ariable Basica X(2	2), Carga Viva	
ø	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$
1.00	0.540029815	0.581205761	0.581205761	0.583373122
0.90	0.528482233	0.577951424	0.577951424	0.580467938
0.80	0.515784581	0.573667111	0.573667111	0.576659417
0.70	0.497243168	0.567779522	0.567779522	0.571454916
0.60	0.468625853	0.559199182	0.559199182	0.563928339
	Variable Basica	X(3), Resistencia	a a compresion de	concreto
φ	$\alpha_D = 1.4; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.7$	$\alpha_D = 1.3; \alpha_L = 1.6$	$\alpha_D = 1.2; \alpha_L = 1.6$
1.00	0.816687863	0.784280708	0.784280708	0.782387209
0.90	0.824879963	0.787077697	0.787077697	0.784919552
0.80	0.833724775	0.79068298	0.79068298	0.788173762
0.70	0.84598411	0.795510031	0.795510031	0.792513119
0.60	0.863584053	0.802313552	0.802313552	0.798595552

Tabla 4.33: Coeficientes de sensitividad para el método SORM. Fuente: Propia.

Figura 4.33: Variación de los coeficientes de sensitividad X(1) y X(2), método FORM - Deflexión. Fuente: Propia.

que presenta una mayor importancia en el calculo de la confiabilidad en este estado de flexión, por otro lado la variable básica X(1) es la que presenta el menor indice.

El valor del coeficiente de sensitividad nos indica que variables básicas necesitan mayor información estadística y cuales podrían ser reemplazados por valores determinísticos, en nuestro caso para el análisis en corte se ve claramente que la variable

Figura 4.34: Variación de los coeficientes de sensitividad X(3) y X(4), método FORM - Deflexión. Fuente: Propia.

Figura 4.35: Variación de los coeficientes de sensitividad X(1) y X(2), método SORM - Deflexión. Fuente: Propia.

básica X(3), es la de mayor importancia y la variable básica X(1), podría ser reemplazado por un valor determinístico debidamente elegido.

Figura 4.36: Variación de los coeficientes de sensitividad X(3) y X(4), método SORM - Deflexión. Fuente: Propia.

4.2.3. Análisis de Sensitividad de la COMB. 02 - ELRS.

4.2.3.1. Sensitividad de las Variables Básicas en Flexión.

El cálculo los coeficientes de sensitividad se realizó siguiendo los mismos procedimientos que en el item 6.2.1 de este trabajo en el modelo de flexión, estos resultados se pueden apreciar en la tabla4.34 y la tabla4.35.

	Variable Basica X(1), Carga Muerta				
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$	
1.00	0.60475327	0.629530788	0.655653503	0.683102055	
0.90	0.563973525	0.588976836	0.615599405	0.643877646	
0.80	0.518554427	0.543373919	0.570075492	0.59876796	
0.70	0.468224351	0.492335963	0.518554427	0.547070482	
0.60	0.412834354	0.435600687	0.460623001	0.488176074	
Vari	able Basica)	(3), Resister	ncia a compr	esion del concreto	
ø	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$	
1.00	0.01011302	0.010190607	0.010181316	0.010063384	
0.90	0.009819546	0.010022764	0.01015692	0.010197521	
0.80	0.009282975	0.009601108	0.009875643	0.01008239	
0.70	0.008482664	0.008889394	0.009282975	0.009643494	
0.60	0.007423148	0.007876409	0.008346673	0.008822081	
	Variable Basi	ica X(4), Esf	uerzo de flue	ncia del acero	
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$	
1.00	0.796348673	0.776908706	0.754993261	0.730253593	
0.90	0.825734485	0.808087762	0.787993788	0.765060512	
0.80	0.85499423	0.839435884	0.82153296	0.800859086	
0.70	0.8835689	0.870359856	0.85499423	0.837030997	
0.60	0.910775874	0.900105551	0.887556637	0.872700574	

Tabla 4.34: Coeficientes de sensitividad para el método FORM. Fuente: Propia.

4.2. Sensitividad de las Variables Básicas.

	Variable Basica $X(1)$, Carga Muerta					
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$		
1.00	0.604753268	0.629530786	0.655653502	0.683102054		
0.90	0.563973523	0.588976834	0.615599402	0.643877644		
0.80	0.518554425	0.543373916	0.57007549	0.598767958		
0.70	0.468224348	0.49233596	0.518554425	0.54707048		
0.60	0.412834351	0.435600684	0.460622998	0.488176071		
Vari	able Basica)	(3), Resister	ncia a compr	esion del concreto		
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$		
1.00	0.010113037	0.010190624	0.010181333	0.010063401		
0.90	0.009819562	0.010022781	0.010156937	0.010197538		
0.80	0.00928299	0.009601124	0.00987566	0.010082407		
0.70	0.008482678	0.008889409	0.00928299	0.00964351		
0.60	0.007423161	0.007876422	0.008346686	0.008822096		
	Variable Basi	ica X(4), Esf	uerzo de flue	ncia del acero		
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$		
1.00	0.796348674	0.776908708	0.754993262	0.730253594		
0.90	0.825734486	0.808087763	0.78799379	0.765060513		
0.80	0.854994231	0.839435885	0.821532962	0.800859087		
0.70	0.883568901	0.870359857	0.854994231	0.837030999		
0.60	0.910775875	0.900105553	0.887556638	0.872700575		

Tabla 4.35: Coeficientes de sensitividad para el método SORM. Fuente: Propia.

Los gráficos generados a partir de los cuadros anteriores, permiten definir el rango de importancia en las variables básicas analizadas:

Figura 4.37: Variación de los coeficientes de sensitividad X(1) y X(2), método FORM - flexión. Fuente: Propia.

De los gráficos mostrados anteriormente podemos definir que la variable básica X(4), es la que presenta un mayor índice de sensitividad, por ello es la que presenta una mayor importancia en el calculo de la confiabilidad en este estado de flexión, por

Figura 4.38: Variación de los coeficientes de sensitividad X(3) y X(4), método FORM - flexión. Fuente: Propia.

Figura 4.39: Variación de los coeficientes de sensitividad X(1) y X(2), método SORM - flexión. Fuente: Propia.

otro lado la variable básica X(3) es la que presenta el menor indice.

El valor del coeficiente de sensitividad nos indica que variables básicas necesitan mayor información estadística y cuales podrían ser reemplazados por valores determinísticos, en nuestro caso para el análisis en flexión se ve claramente que la variable básica X(4), es la de mayor importancia y la variable básica X(3), podría ser reemplazado por un valor determinístico.

Figura 4.40: Variación de los coeficientes de sensitividad X(3) y X(4), método SORM - flexión. Fuente: Propia.

4.2.3.2. Sensitividad de las Variables Básicas en Corte.

Como es sabido la resistencia a compresión del concreto esta directamente relacionada con al resistencia al cortante, por ello la sensibilidad de esta variable sera la que presente el mayor coeficiente, como se muestra en la tabla4.36 y la Tabla4.37.

	Variable Basica X(1), Carga Muerta				
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$	
1.00	0.695526144	0.695526167	0.695526175	0.69552344	
0.95	0.695526101	0.695526151	0.69552617	0.695526176	
0.90	0.695526006	0.695526112	0.695526157	0.695526173	
0.85	0.695525813	0.695526023	0.695526124	0.695526163	
0.80	0.695525435	0.69552583	0.695526041	0.695526134	
Vari	able Basica)	K(3), Resister	ncia a compr	esion del concreto	
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$	
1.00	0.718500788	0.718500766	0.718500759	0.718503406	
0.95	0.71850083	0.718500781	0.718500763	0.718500757	
0.90	0.718500922	0.718500819	0.718500775	0.718500761	
0.85	0.718501109	0.718500905	0.718500808	0.71850077	
0.80	0.718501475	0.718501093	0.718500888	0.718500798	

Tabla 4.36: Coeficientes de sensitividad para el método FORM. Fuente: Propia.

Los gráficos generados a partir de los cuadros anteriores, permiten definir el rango de importancia en las variables básicas analizadas:

De los gráficos mostrados anteriormente podemos definir que la variable básica X(3), es la que presenta un mayor índice de sensitividad, por ello es la

Variable Basica X(1), Carga Muerta				
¢	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$
1.00	0.695526149	0.695526172	0.69552618	0.695523445
0.95	0.695526105	0.695526156	0.695526175	0.695526181
0.90	0.695526011	0.695526117	0.695526162	0.695526177
0.85	0.695525817	0.695526028	0.695526128	0.695526167
0.80	0.69552544	0.695525835	0.695526046	0.695526139
Varia	able Basica 🛛	K(3), Resister	ncia a compr	esion del concreto
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$
1.00	0.718500783	0.718500761	0.718500754	0.718503401
0.95	0.718500826	0.718500777	0.718500758	0.718500753
0.90	0.718500917	0.718500814	0.718500771	0.718500756
0.85	0.718501105	0.718500901	0.718500804	0.718500766
0.80	0.71850147	0.718501088	0.718500884	0.718500793

Tabla 4.37: Coeficientes de sensitividad para el método SORM. Fuente: Propia.

Figura 4.41: Variación de los coeficientes de sensitividad $X(1) \ge X(2)$, método FORM - Corte. Fuente: Propia.

que presenta una mayor importancia en el calculo de la confiabilidad en este estado de flexión, por otro lado la variable básica X(1) es la que presenta el menor indice.

El valor del coeficiente de sensitividad nos indica que variables básicas necesitan mayor información estadística y cuales podrían ser reemplazados por valores determinísticos, en nuestro caso para el análisis en corte se ve claramente que la variable básica X(3), es la de mayor importancia y la variable básica X(1), podría ser reemplazado por un valor determinístico.

Figura 4.42: Variación de los coeficientes de sensitividad $X(1) \ge X(2)$, método SORM - Corte. Fuente: Propia.

4.2.3.3. Sensitividad de las Variables Básicas en Deflexión.

Al igual que en las secciones anteriores (flexión y corte) se determino los coeficientes de sensibilidad para el diseño por delexiones, para este modelo se pude ver que la resistencia a compresión del concreto también influye en al respuesta del indice de confiabilidad obtenido, esto puede deberse a que el momento de inercia efectiva *Ie* esta relacionada con la resistencia del concreto. Es preciso mencionar que para este análisis no se consideró la variable básica relacionada con el acero de refuerzo ya que al contemplar esta variable la función de falla, esta no genera convergencia en el calculo del indice de confiabilidad. Los resultados de este análisis se ven en la tabla4.38 y la tabla4.39.

Los gráficos generados a partir de los cuadros anteriores, permiten definir el rango de importancia en las variables básicas analizadas:

De los gráficos mostrados anteriormente podemos definir que la variable básica X(3), es la que presenta un mayor índice de sensitividad, por ello es la que presenta una mayor importancia en el calculo de la confiabilidad en este estado de flexión, por otro lado la variable básica X(1) es la que presenta el menor indice.

	Variable Basica X(1), Carga Muerta					
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$		
1.00	0.409171939	0.410779768	0.412400469	0.414035482		
0.90	0.406341128	0.408106523	0.40988503	0.411678477		
0.80	0.40284285	0.404805802	0.406781344	0.40877183		
0.70	0.398391743	0.40061206	0.40284285	0.405087198		
0.60	0.392500942	0.395074689	0.397653463	0.40024136		
Varia	able Basica)	(3), Resister	ncia a compr	esion del concreto		
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$		
1.00	0.9124573	0.911734601	0.911002664	0.910260743		
0.90	0.91372145	0.912934316	0.912137195	0.911329156		
0.80	0.915269162	0.914402681	0.913525554	0.912636615		
0.70	0.917215361	0.916247771	0.915269162	0.914278055		
0.60	0.919751602	0.918649003	0.91753568	0.916409763		

Tabla 4.38: Coeficientes de sensitividad para el método FORM. Fuente: Propia.

	Variable Basica X(1), Carga Muerta					
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$		
1.00	0.409171114	0.410778945	0.412399647	0.414034662		
0.90	0.4063403	0.408105696	0.409884206	0.411677655		
0.80	0.402842017	0.404804972	0.406780516	0.408771005		
0.70	0.398390905	0.400611225	0.402842017	0.405086368		
0.60	0.392500097	0.395073847	0.397652624	0.400240524		
Varia	able Basica J	K(3), Resister	ncia a compr	esion del concreto		
φ	$\alpha_D = 1.6$	$\alpha_D = 1.5$	$\alpha_D = 1.4$	$\alpha_D = 1.3$		
1.00	0.91245767	0.911734972	0.911003036	0.910261115		
0.90	0.913721818	0.912934686	0.912137565	0.911329528		
0.80	0.915269528	0.914403048	0.913525923	0.912636985		
0.70	0.917215725	0.916248136	0.915269528	0.914278423		
0.60	0.919751963	0.918649365	0.917536043	0.916410128		

Tabla 4.39: Coeficientes de sensitividad para el método SORM. Fuente: Propia.

Figura 4.43: Variación de los coeficientes de sensitividad X(1) y X(2), método FORM - Deflexión. Fuente: Propia.

Figura 4.44: Variación de los coeficientes de sensitividad $X(1) \ge X(2)$, método SORM - Deflexión. Fuente: Propia.

El valor del coeficiente de sensitividad nos indica que variables básicas necesitan mayor información estadística y cuales podrían ser reemplazados por valores determinísticos, en nuestro caso para el análisis en corte se ve claramente que la variable básica X(3), es la de mayor importancia y la variable básica X(1), podría ser reemplazado por un valor determinístico.

4.2.4. Análisis de Sensitividad de la COMB. 03 - ELEE.

4.2.4.1. Sensitividad de las Variables Básicas en Distorsión.

La sensitividad de las variables básicas en el fenómeno de distorsiones, fueron obtenidas mediante el programa elaborado en *MatLab*, y con los procedimientos previos indicados en este trabajo en las secciones 3.4 y 5.6. Tal como se puede observar en el Anexo E.

La variable básica X(4) correspondiente al Esfuerzo de fluencia del acero, no fue tomada en cuenta para el análisis de las distorsiones, debido a que en el cálculo de las derivas se toma en cuenta las inercias brutas de los elementos estructurales que aportan rigidez al sistema, y no se toma en consideración el aporte del acero provisto en la sección de los elementos resistente a las fuerzas laterales.

Con la Ayuda del programa mencionado anteriormente se calculo los coeficientes de sensitividad para cada una de las variables básicas involucras en el modelo de distorsión, estos resultados se pueden apreciar en la tabla4.40 y la tabla4.41.

	Variable Basica X(1), Carga Muerta				
Z	$\alpha_D = 1.25; \alpha_L = 1.25; \alpha_S = 1$	$\alpha_D = 1.25; \alpha_L = 1.15; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1.1; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1; \alpha_S = 1$	
0.45	0.365610958	0.375384425	0.379263625	0.382508223	
0.35	0.355229348	0.367481418	0.374930241	0.378546213	
0.25	0.337421297	0.353565857	0.365230195	0.373370469	
0.10	0.258907222	0.290012498	0.333811517	0.351158509	
	Variable Basica X(2), Carga Viva				
Z	$\alpha_D = 1.25; \alpha_L = 1.25; \alpha_S = 1$	$\alpha_D = 1.25; \alpha_L = 1.15; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1.1; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1; \alpha_S = 1$	
0.45	0.414343431	0.418716014	0.419709921	0.420472387	
0.35	0.410163406	0.415010103	0.418593585	0.419532984	
0.25	0.400876185	0.409414053	0.414204605	0.418163206	
0.10	0.316515277	0.359391806	0.398628815	0.408288596	
	Variable	Basica $X(3)$, Resistencia a	compresion del concreto)	
Z	$\alpha_D = 1.25; \alpha_L = 1.25; \alpha_S = 1$	$\alpha_D = 1.25; \alpha_L = 1.15; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1.1; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1; \alpha_S = 1$	
0.45	0.833455547	0.826899893	0.824622753	0.822733512	
0.35	0.839986958	0.83230044	0.827167894	0.825042326	
0.25	0.851730681	0.841053695	0.83369146	0.82809059	
0.10	0.912570616	0.886978174	0.854204272	0.84260793	

Tabla 4.40: Coeficientes de sensitividad para el método FORM. Fuente: Propia.

[]	Variable Basica X(1), Carga Muerta					
Z	$\alpha_D = 1.25; \alpha_L = 1.25; \alpha_S = 1$	$\alpha_D = 1.25; \alpha_L = 1.15; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1.1; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1; \alpha_S = 1$		
0.45	0.365610621	0.375384102	0.379263307	0.382507908		
0.35	0.355228996	0.367481083	(1.374929917	0.378545893		
0.25	0.337420918	0.353565502	0.365229857	0.373370143		
0.10	0.258906683	0.29001203	0.333811132	0.351158151		
		Variable Basica $X(2)$,	Carga Viva			
Z	$\alpha_D = 1.25; \alpha_L = 1.25; \alpha_S = 1$	$\alpha_D = 1.25; \alpha_L = 1.15; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1.1; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1; \alpha_S = 1$		
0.45	0.414342267	0.418714864	0.419708778	0.420471249		
0.35	0.410162226	0.415008942	0.418592434	0.419531839		
0.25	0.400874978	0.40941287	0.41420344	0.418162053		
0.10	0.316514023	0.35939055	0.398627604	0.408287409		
	Variable	Basica X(3), Resistencia a	compresion del concreto)		
Z	$\alpha_D = 1.25; \alpha_L = 1.25; \alpha_S = 1$	$\alpha_D = 1.25; \alpha_L = 1.15; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1.1; \alpha_S = 1$	$\alpha_D = 1.2; \alpha_L = 1; \alpha_S = 1$		
0.45	0.833456274	0.826900622	0.824623481	0.82273424		
0.35	0.839987684	0.832301167	0.827168623	0.825043055		
0.25	0.851731399	0.84105442	0.833692187	0.828091319		
0.10	0.912571204	0.886978835	0.854204988	0.842608654		

Tabla 4.41: Coeficientes de sensitividad para el método SORM. Fuente: Propia.

Los gráficos generados a partir de los cuadros anteriores, permiten definir el rango de importancia en las variables básicas analizadas:

Figura 4.45: Variación de los coeficientes de sensitividad X(1) y X(2), método FORM - Distorsión. Fuente: Propia.

Figura 4.46: Variación de los coeficientes de sensitividad X(3) y X(4), método FORM - Distorsión. Fuente: Propia.

De los gráficos mostrados anteriormente podemos definir que la variable básica X(3), es la que presenta un mayor índice de sensitividad, por ello es la que presenta una mayor importancia en el calculo de la confiabilidad en este estado de distorsión, por otro lado la variable básica X(1) es la que presenta el menor indice.

El valor del coeficiente de sensitividad nos indica que variables básicas necesitan mayor información estadística y cuales podrían ser reemplazados por valores deter-

Figura 4.47: Variación de los coeficientes de sensitividad X(1) y X(2), método SORM - Distorsión. Fuente: Propia.

Figura 4.48: Variación de los coeficientes de sensitividad X(3) y X(4), método SORM - Distorsión. Fuente: Propia.

minísticos, en nuestro caso para el análisis en distorsión se ve claramente que la variable básica X(3), es la de mayor importancia y la variable básica X(1), podría ser reemplazado por un valor determinístico.

4.2.5. Análisis de Sensitividad de la COMB. 04 - ELEE.

4.2.5.1. Sensitividad de las Variables Básicas en Distorsión.

Con la Ayuda del programa mencionado anteriormente se calculo los coeficientes de sensitividad para cada una de las variables básicas involucras en el modelo de distorsión, estos resultados se pueden apreciar en la tabla4.40 y la tabla4.41.

Variable Basica X(1), Carga Muerta				
Z	$\alpha_D = 1; \alpha_S = 1$	$\alpha_D=0.95; \alpha_S=1$	$\alpha_D = 0.9; \alpha_S = 1$	$\alpha_D = 0.85; \alpha_S = 1$
0.45	0.54865887	0.552913948	0.554669144	0.556230768
0.35	0.544512463	0.549947126	0.553138966	0.554903843
0.25	0.537027322	0.544552252	0.549563567	0.553128175
0.10	0.498359884	0.516316178	0.537165845	0.545018952
Variable Basica X(3), Resistencia a compresion del concreto				
L	variable Dasica	$\mathbf{A}(3),$ mesistence	a a compresion	del concreto
Z	$\alpha_D = 1; \alpha_S = 1$	$\alpha_D = 0.95; \alpha_S = 1$	$\alpha_D = 0.9; \alpha_S = 1$	$\alpha_D = 0.85; \alpha_S = 1$
Z 0.45	$\alpha_D = 1; \alpha_S = 1$ 0.836046317	$\alpha_D = 0.95; \alpha_S = 1$ 0.833238361	$\alpha_D = 0.9; \alpha_S = 1$ 0.832070995	$\alpha_D = 0.85; \alpha_S = 1$ 0.831027878
Z 0.45 0.35	$\alpha_D = 1; \alpha_S = 1$ 0.836046317 0.838752751	$\alpha_D = 0.95; \alpha_S = 1$ 0.833238361 0.835199472	$\begin{array}{c} \alpha_D = 0.9; \alpha_S = 1 \\ \hline 0.832070995 \\ \hline 0.833089002 \end{array}$	$\frac{\alpha_D = 0.85; \alpha_S = 1}{0.831027878}$ 0.831914494
Z 0.45 0.35 0.25	$\alpha_D = 1; \alpha_S = 1$ 0.836046317 0.838752751 0.843564849	$\begin{aligned} \alpha_D &= 0.95; \alpha_S = 1\\ 0.833238361\\ 0.835199472\\ 0.838726919 \end{aligned}$	$\begin{aligned} \alpha_D &= 0.9; \alpha_S = 1 \\ 0.832070995 \\ 0.833089002 \\ 0.835451905 \end{aligned}$	$\begin{array}{c} \alpha_D = 0.85; \alpha_S = 1 \\ 0.831027878 \\ 0.831914494 \\ 0.833096166 \end{array}$

Tabla 4.42: Coeficientes de sensitividad para el método FORM. Fuente: Propia.

Variable Basica X(1), Carga Muerta					
Z	$\alpha_D = 1; \alpha_S = 1$	$\alpha_D=0.95; \alpha_S=1$	$\alpha_D=0.9; \alpha_S=1$	$\alpha_D = 0.85; \alpha_S = 1$	
0.45	0.548658223	0.552913306	0.554668504	0.55623013	
0.35	0.544511809	0.54994648	0.553138324	0.554903203	
0.25	0.537026659	0.544551598	0.54956292	0.553127533	
0.10	0.498359171	0.516315488	0.537165182	0.545018299	
	Variable Basica X(3), Resistencia a compresion del concreto				
Z	$\alpha_D = 1; \alpha_S = 1$	$\alpha_D=0.95; \alpha_S=1$	$\alpha_D = 0.9; \alpha_S = 1$	$\alpha_D = 0.85; \alpha_S = 1$	
0.45	0.836046742	0.833238787	0.832071421	0.831028304	
0.35	0.838753175	0.835199898	0.833089427	0.83191492	
0.25	0.843565272	0.838727343	0.835452331	0.833096592	
0.10	0.866970667	0.856398457	0.84347707	0.838424149	

Tabla 4.43: Coeficientes de sensitividad para el método SORM. Fuente: Propia.

Los gráficos generados a partir de los cuadros anteriores, permiten definir el rango de importancia en las variables básicas analizadas:

De los gráficos mostrados anteriormente podemos definir que la variable básica X(3), es la que presenta un mayor índice de sensitividad, por ello es la que presenta una mayor importancia en el calculo de la confiabilidad en este estado de distorsión, por otro lado la variable básica X(1) es la que presenta el menor indice.

Figura 4.49: Variación de los coeficientes de sensitividad X(1) y X(2), método FORM - Distorsión. Fuente: Propia.

Figura 4.50: Variación de los coeficientes de sensitividad X(1) y X(2), método SORM - Distorsión. Fuente: Propia.

El valor del coeficiente de sensitividad nos indica que variables básicas necesitan mayor información estadística y cuales podrían ser reemplazados por valores determinísticos, en nuestro caso para el análisis en distorsión se ve claramente que la variable básica X(3), es la de mayor importancia y la variable básica X(1), podría ser reemplazado por un valor determinístico.

4.3. Aplicación a un Proyecto Local.

4.3.1. Descripción del Proyecto.

La aplicación practica en la presente Tesis es en la obra "Mejoramiento de la Capacidad Resolutiva del Hospital Regional Miguel Ángel Mariscal Llerena de Ayacucho", ejecutada en calidad de contratista por el Consorcio Hospitalario Ayacucho (I.C.C.G.S.A. - Grupo Incot), y supervisada por el Consorcio Supervisor Hospitalario Ayacucho (Alpha Consult S.A. - Chung y Tong Ingenieros S.A.C. - Planho Consultores S.L.P. S.P. - Euroconsult S.P.), en cuya construcción desempeñe en el cargo de Asistente de Supervisión.

Figura 4.51: Modelado de la vista aérea del Proyecto. Fuente: Consorcio Hospitalario Ayacucho.

En la Tesis se analiza específicamente el Bloque E de esta obra, que estará destinada a la unidad de emergencias. Se estudiará el comportamiento del área de acero requerida en los miembros estructurales de este bloque para las combinaciones de carga recomendadas en este trabajo. Para el calculo de estas áreas se tomarán en cuenta las recomendaciones del RNE.

4.3.2. Argumentos Requeridos para el Análisis.

La estructura se ubica en el Distrito de Ayacucho, provincia de Huamanga y Región Ayacucho; la capacidad admisible predomínate del terreno es de 8 Kg/cm2, a una profundidad variable, de acuerdo al Informe Técnico de Estudio de Suelos, y a las excavaciones en campo.

4.3.2.1. Descripción del proyecto.

La presente memoria descriptiva y de cálculo tiene como objetivo principal mostrar el planteamiento y concepción estructural del proyecto "Mejoramiento de la capacidad resolutiva del Hospital Miguel Ángel Mariscal Llerena de Ayacucho". Como parámetro muy importante, se considera la categoría de la edificación, la cual cae en la clasificación de Edificaciones Esenciales, son edificaciones cuyas funciones no deben interrumpirse en forma inmediata ante la ocurrencia de un sismo, esto es porque ante un evento sísmico o catástrofe de cual quier índole estas edificaciones pueden servir de refugio y de atención a posibles heridos producto del evento. El proyecto integral está compuesto por 23 bloques separados uno del otro mediante juntas de 5 y 7.5 cms de espesor dependiendo de la altura de cada bloque, el número de pisos es variable desde 1 hasta 4 pisos.

Figura 4.52: Distribución de bloques del Proyecto. Fuente: GRA-CERAETE-2013.

4.3.2.2. Normas Empleadas.

Las cargas de gravedad y de sismo que se utilizarán para el análisis estructural del edificio y en el diseño de los diferentes elementos estructurales, deberán cumplir con lo señalado en el Reglamento Nacional de Edificaciones(R.N.E.), E-020 de Cargas, E-030 de Diseño Sismorresistente, E-060 de Concreto Armado, E-050 de Suelos y Cimentaciones, E-070 Albañilería. Así como el Código ACI-318(última edición).

4.3.2.3. Cargas de Diseño.

La Norma Técnica E-020 recomienda valores mínimos para las cargas que se deben considerar en el diseño de una estructura, dependiendo del uso al cual está diseñada la misma. Las cargas a considerar son las denominadas: muertas, vivas y sismo. Consideramos como carga muerta(CM) al peso de los materiales, tabiques y otros elementos soportados por la estructura, incluyendo su peso propio que se suponen serán permanentes. Como carga viva(CV), al peso de los ocupantes, materiales, equipo, muebles y otros elementos móviles. Finalmente las cargas de sismo(CS) son aquellas que se generan debido a la acción sísmica sobre la estructura.

4.3.2.4. Diseño en Concreto Armado.

Para la resistencia nominal requerida, se emplearon las siguientes combinaciones de cargas:

RNE - E060 (2009)	Propuesta (2016)	ACI 318-14
U = 1.4D + 1.7L	$\overline{U} = 1.4D$	U = 1.4D
$U = 1.25(D+L) \pm E$	U = 1.3D + 1.6L	U = 1.2D + 1.6L + 0.5(Lr/S/R)
$U = 0.9D \pm E$	$U = 1.2D + 1.1L \pm E$	$U = 1.2D \pm 1.0E + 1.0L + 0.2S$
	$U = 0.9D \pm 1.0E$	$U = 0.9D \pm 1.0E$

Tabla 4.44: Combinaciones de carga. Fuente: Propia

Además, el Reglamento establece factores de reducción de resistencia en los siguientes casos:

4.3. Aplicación a un Proyecto Local.

RNE - Propuest	a	ACI 318-14		
Flexión	0.90	Flexión	0.90	
Flexión y tracción	0.90	Flexión y tracción	0.90	
Cortante	0.85	Cortante	0.75	
Torsión	0.85	Torsión	0.75	
Cortante y torsión	0.85	Cortante y torsión	0.75	
Compresión y flexo comp	oresion	Compresión y flexo compresion		
Elementos con espirales	0.75	Elementos con espirales	0.70	
Elementos con estribos 0.70		Elementos con estribos	0.65	

Tabla 4.45: Factores de reducción de resistencia. Fuente: Propia

4.3.2.5. Materiales Usados.

Para realizar el diseño se han considerado los siguientes materiales:

 Acero de refuerzo: Se usó barras de acero corrugado y/o barras de acero liso del tipo grado 60. Las principales propiedades de estas barras son las siguientes:

$$f_y = 4200 \ kg/cm^2 \ - \ E_S = 2000000 \ kg/cm^2 \tag{4.3.1}$$

 Concreto armado: Llamado así porque dentro del concreto se tiene acero corrugado de refuerzo para que ambos sean un solo material, y puedan resistir los esfuerzos aplicados a los elementos estructurales. Sus propiedades varían al tipo de concreto y acero:

$$f'c = 210 \ kg/cm^2 \ - \ E_C = 15000 \sqrt{f'c} \ kg/cm^2 \ - \ \mu = 0.15 \tag{4.3.2}$$

4.3.3. Modelo de la Estructura.

Este análisis se desarrolló con un modelo matemático de forma tridimensional, del cual se obtuvo las rigideces de cada uno de los pórticos con la finalidad de realizar una condensación estática y poder obtener una rigidez del sistema en coordenadas del piso. En el modelo se consideró 3 grados de libertad por piso (diafragma rígido), 2 grados traslacionales (X e Y) y un grado rotacional (Alrededor de Z). Los apoyos de la base de la estructura se consideraron como empotrados para las columnas y apoyos fijos para los muros de concreto armado.

Figura 4.53: Modelo tridimensional de la estructura. Fuente: Etabs-2015.

4.3.4. Análisis de la Estructura.

El análisis de la estructura se efectuó de acuerdo a las indicaciones de la norma E030 y lo mencionado en las secciones 3.4. de este trabajo. Se debe de indicar que el proyecto del Hospital Regional de Ayacucho, fue diseñado con la norma E030 anterior, por lo que para este trabajo se tubo que actualizar el diseño de acuerdo a la nueva norma E030 publicada en el diario oficial el Peruano el 24 de Enero del 2016.

El espectro de diseño fue obtenido a partir de los parámetros mostrados en la tabla4.46:

El espectro quedara definido por los valores mostrados en la tabla4.47, en esta tabla también se puede apreciar los gráficos del espectro de aceleración, velocidad y

4.3. Aplicación a un Proyecto Local.

Zona Sismica	Z3	Z=0.35
Categoria	A2	U=1.50
Suelo	S1	S=1.00
Sistema Estructural	C°A° Muros	Ro=6.00
Irregularidad en Planta	Ip=1.00	$T_{P}=0.40$
Irregularidad en Altura	Ia=1.00	$T_L = 2.5$

Tabla 4.46: Parámetros de diseño según la E030. Fuente: Propia

desplazamiento:

Entes de realizar el diseño de los elementos estructurales de la edificación, esta debe de cumplir con varios requisitos previos que son determinados en el análisis sísmico de la estructura, como son los siguientes.

- Se debe de verificar que las irregularidades tomadas inicialmente cumplen con los comentarios de las tablas N°8 y N°9 de la norma E030, al realizar un análisis estático inicial.
- La suma de las masas de participación modal en un análisis dinámico deben se mayor al 90% de la masa total.
- El periodo fundamental de la estructura debe ser comparada con el periodo del primer modo de vibración de la edificación.
- Para el cálculo de los desplazamientos y fuerzas se utilizará en el análisis dinámico la combinación cuadrática completa (CQC).
- Se debe de verificar que el sistema estructural cumpla con los requisitos de la norma en la sección 3.2.1, en este caso los muros de concreto armado deberán de soportar el 70% de la fuerza cortante total.
- Se debe de verificar los desplazamientos inelásticos obtenidos a partir de los comentarios de la norma E030 en la sección 5.1, no superaren las derivas indicadas en la tabla N°11.

Tabla 4.47: Espectro de diseño según la E030. Fuente: Propia

 El cortante dinámico no deberá de ser menor al 80% del cortante estático para estructuras regulares, en caso de no cumplir la condición se deberá de escalar el espectro. Esto se aplica solo para el diseño de los elementos estructurales y mas no así al calculo de los desplazamientos.

Al cumplir con los requisitos mencionados anteriormente, se puede realizar el diseño de los elementos de concreto armado de la edificación, se realizaron tres tipos de análisis considerando las combinaciones de carga presentadas en la tabla4.44, y los factores de reducción de resistencia de la tabla4.45.

4.3.5. Obtención de Refuerzos.

Las áreas de acero fueron determinadas para dos tipos de elementos (viga y columna), las cuales se ubican en el pórtico del eje 6-6, la viga se encuentra entre los ejes D-Dy E-E en el primer nivel, y la columna se halla en el eje D-D, en los pisos del sótano y el primer piso. Los ejes de la edificación de análisis se puede observar en la figura4.54:

Figura 4.54: Ejes de la estructura de análisis. Fuente: Etabs-2015.

El valor de las áreas de acero requeridas en los elementos estructurales mencionados anteriormente, para cada una de las combinaciones de diseño de la tabla4.44, se

4.3. Aplicación a un Proyecto Local.

muestran en la tabla4.48.

Tipo	Elemento Viga			Elemento Columna	
Código	Extr. Izq.	Centro Luz	Extr. Der.	Sotano	1° Nivel
RNE	19.35	28.09	27.03	34.16	20.25
Propuesta	17.89	25.88	24.88	24.87	20.25
ACI 318-14	16.86	24.48	23.32	23.96	20.25

Tabla 4.48: Áreas de acero requeridas (cm2), según tipo de elemento y combinación de diseño. Fuente: Propia

Los valores de la tabla anterior fueron obtenidos por medio del programa de computo Etabs v15.0 2015, a través del módulo de diseño de concreto armado, estos resultados para el pórtico en el eje 6-6, se muestran en el Anexo G.

Las áreas de acero obtenidas por la combinación de diseño propuesta en este trabajo presenta una aproximación cercana a las áreas de acero obtenidas por la combinación de diseño del ACI. En cambio se puede notar que los valores de estas áreas obtenidas por las combinaciones de diseño del RNE, son mayores en comparación con las otras dos combinaciones de diseño.

Por lo que podemos indicar que la combinación de diseño propuesta en este trabajo, es una buena alternativa de cambio en nuestra norma de diseño E060.

Capítulo 5

Conclusiones, Recomendaciones e Investigaciones Futuras.

5.1. Conclusiones.

En el presente trabajo se ha desarrollado el análisis de los coeficientes de amplificación de carga de la norma Técnica E060, describiendo los modelos y variables utilizadas en el cálculo de los indices de confiabilidad y la probabilidad de falla asociada a cada combinación de estos coeficientes de amplificación de carga, con la finalidad de proponer una modificación que este de acuerdo a los lineamientos de las normas citadas en este trabajo que sirvieron como guía para la toma de decisiones de estos coeficientes de amplificación de carga.

Las conclusiones con respecto a las variables básica involucradas en este trabajo de investigación son:

• El valor medio del esfuerzo de fluencia del acero obtenido en este trabajo fue de $4945.93 kg/cm^2$, este valor es aceptable dado que este material de construcción es fabricado por empresas que cumplen estándares de calidad y normas (NTP,

ASTM) que regulan su fabricación.

- El valor medio de la carga muerta asociada al peso especifico del concreto fue obtenido de las investigaciones desarrolladas y referencia bibliográficas referentes al tema.
- El valor medio de la resistencia a compresión del concreto fue obtenida de muestras recolectadas en distintas obras de construcción de la región de Ayacucho, cabe indicar que en estas obras se tiene un control técnico de los materiales que componen el concreto, por otro lado en los proyectos pequeños destinadas a la construcción de viviendas menores es dudoso el control de estos materiales, por lo cual para poder alcanzar el valor medio de 242.61kg/cm² en la resistencia a compresión del concreto obtenida en este trabajo, hace falta implementar una rigurosa inspección por parte de las Municipalidades.
- Del análisis de las cargas vivas de diseño, se obtuvieron valores normalizados para una probabilidad de excedencia de 50%, para los distintos tipos de uso(Oficinas, Aulas, Viviendas y Hoteles). Los valores obtenidos en este trabajo se encuentran por debajo de lo recomendado por el RNE en la norma E020 de cargas, pero estos valores son muy similares a lo recomendado por el AS-CE/SEI 7-10, por lo que a raíz de esta investigación se propone los siguientes valores de cargas de diseño para áreas menores a 40m2, estos resultados se ven en la tabla5.1

Con respecto a los modelos utilizados y las funciones de falla podemos concluir los siguiente:

El modelo matemático utilizado en el análisis de la flexión, corresponde a la ecuación que gobierna este fenómeno, el cual surge de un análisis de esfuerzos y deformación en una sección dada. La función de falla obtenida a partir de esta ecuación se presentas como una variación de las cuantías de acero requeridas

en la sección de análisis para cada una de las combinaciones de los factores de carga y resistencia.

- El efecto de la fuerza cortante es un fenómeno complejo conformado por numerosas variables, por ello se han desarrollado modelos matemáticos en función de parámetros semi-empíricos que buscan explicar este fenómeno. La función de falla obtenida a partir de esta ecuación se presentas como una variación de los productos requeridos *dbw* requeridas en la sección de análisis para cada una de las combinaciones de los factores de carga y resistencia.
- Las deflexiones se modelaron a partir de las investigaciones realizadas por Branson, las recomendaciones de la norma ACI 318-14 y el RNE. En este modelo se consideró la interacción de las deformaciones instantáneas y las de largo plazo(5 años o mas). La función de falla obtenida a partir de esta ecuación se presenta como una variación del momento de inercia efectiva *Ie* requeridas en la sección de análisis para cada una de las combinaciones de los factores de carga y resistencia.
- El cálculo de las distorsiones fueron modeladas limitando las derivas a valores máximos y la acción de la fuerza sísmica fue determinada según la norma E030, en el análisis se consideró un solo grado de libertad la cual esta relacionada al desplazamiento lateral de la estructura. La función de falla obtenida a partir de estas consideraciones se presenta como una variación del producto del factor de Zona Z y de Sitio S entre el momento de inercia I de las columnas del pórtico analizado, ZS/I requeridas en la sección de análisis para cada una de las combinaciones de los factores de carga y zona sísmica.

Del análisis de confiabilidad realizado se obtienen las siguientes conclusiones:

 Los resultados obtenidos en los indices de confiabilidad, probabilidad de falla y la sensitividad de las variables básicas, por los métodos FORM y SORM, no presentan una diferencia pequeña en estos valores, por lo que se recomienda utilizar el método FORM que presenta una menor capacidad computacional a la hora de obtener los resultados ante el Método SORM. En este trabajo se tomo el valor promedio de los resultados obtenidos por los métodos FORM y SORM.

- Los factores de reducción de carga en las combinaciones de diseño que se presentan como modificatoria a la norma E060, mantienen los mismos valores de ϕ 00.90 para el caso de flexión y $\phi = 0.85$ para el corte.
- Los índice de confiabilidad con respecto a la combinación de diseño 01 de la norma E060, para los casos de flexión, corte y deflexión presentan valores de 4.97, 4.55 y 3.65 respectivamente, estos valores se encuentra muy por encima del valor de 3 que es el recomendado por las investigaciones de Ellinwood y la norma LRFD, por lo que se propone cambiar los coeficientes de amplificación de carga a los valores de $\alpha_D = 1.3$, $\alpha_L = 1.6$, que presenta los índice de confiabilidad de 4.59, 4.30 y 3.33 respectivamente, cabe indicar que estos valores se encuentra por encima de los obtenidos de la norma ACI que presenta los valores de 4.36, 4.13 y 3.31 respectivamente.
- La combinación de diseño 02 analizada en este trabajo, no es considerada en la norma E060, por lo cual del análisis realizado obtenemos que la mejor propuesta para esta combinación es de $\alpha_D = 1.4$, la cual presenta para los casos de flexión, corte y deflexión los siguientes indices de confiabilidad 6.39, 5.50 y 3.19 respectivamente, cabe indicar que esta combinación es la propuesta por la norma ACI.
- Como se puede ver en los comentarios anteriores, el fenómeno de las deflexiones es el que determina el valor de los coeficientes de amplificación de carga que serán propuestos como modificatoria en las combinaciones de diseño 01 y 02.

- Los índice de confiabilidad con respecto a la combinación de diseño 03 de la norma E060, para el caso de distorsión presenta un valor de 2.16, este valor se encuentra muy por encima del valor de .175 que es el recomendado por las investigaciones de Ellinwood y la norma LRFD, por lo que se propone cambiar los coeficientes de amplificación de carga a los valores de $\alpha_D = 1.2$, $\alpha_L = 1.1$ y $\alpha_S = 1$, que presenta el índice de confiabilidad de 1.97, cabe indicar que este valor se encuentra por encima del obtenido de la norma ACI que presenta el valor de 1.93.
- Los índice de confiabilidad con respecto a la combinación de diseño 04 de la norma E060, para el caso de distorsión presenta un valor de 1.81, este valor se encuentra muy cerca del valor de .175 que es el recomendado por las investigaciones de Ellinwood y la norma LRFD, por lo que se propone mantener esta combinación de diseño, cabe indicar que esta combinación es la propuesta por la norma ACI.

Las conclusiones con respecto a la sensitividad de las variables básica involucradas en este trabajo de investigación son:

- En el análisis a flexión, la variable que presenta un mayor valor del coeficiente de sensitividad es la carga viva X(2), con un valor de 0.9, lo que índica que esta variable requiere mayor información estadística para la modelación de este fenómeno, por otro lado la variable de resistencia a compresión del concreto X(3) presenta el menor valor que es de 0.01, lo que indica que esta variable pude ser cambiada por un valor determinístico apropiadamente elegido en la modelación de este fenómeno.
- En el análisis de corte, la variable que presenta un mayor valor del coeficiente de sensitividad es la resistencia a compresión del concreto X(3), con un valor de 0.9, lo que índica que esta variable requiere mayor información estadística para

la modelación de este fenómeno, por otro lado la variable de la carga muerta X(1) presenta el menor valor que es de 0.1, lo que indica que esta variable pude ser cambiada por un valor determinístico apropiadamente elegido en la modelación de este fenómeno.

- En el análisis de deflexiones, la variable que presenta un mayor valor del coeficiente de sensitividad es la resistencia a compresión del concreto X(3), con un valor de 0.8, lo que índica que esta variable requiere mayor información estadística para la modelación de este fenómeno, por otro lado la variable de la carga muerta X(1) presenta el menor valor que es de 0.2, lo que indica que esta variable pude ser cambiada por un valor determinístico apropiadamente elegido en la modelación de este fenómeno.
- En el análisis de distorsiones, la variable que presenta un mayor valor del coeficiente de sensitividad es la resistencia a compresión del concreto X(3), con un valor de 0.8, lo que índica que esta variable requiere mayor información estadística para la modelación de este fenómeno, por otro lado la variable de la carga muerta X(1) presenta el menor valor que es de 0.3, lo que indica que esta variable pude ser cambiada por un valor determinístico apropiadamente elegido en la modelación de este fenómeno.
- La variable básica X(1) correspondiente a la carga muerta puede ser reemplazada por un valor determinístico en análisis futuros, el valor de esta variable seria de 2.4tn/m, el cual es recomendado en diversas bibliografías para un concreto de calidad de $f'c = 210kg/cm^2$.

Las conclusiones finales de este trabajo son:

• Se puede reducir cargas vivas de diseño a los valores indicados en la tabla5.1.

5.2. Recomendaciones.

Propuesta	Lo (CV)
Tipo de Uso	(kg/m^2)
Oficinas	240
Aulas de clase	240
Viviendas	190
Cuartos de Hotel	190

Tabla 5.1: Propuesta de Cambio en las Cargas vivas de Diseño. Fuente: Propia.

• Es factible reducir los coeficientes de amplificación de carga en las 04 combinaciones de diseño analizadas a los valores indicados en la tabla5.2, manteniendo los coeficienes de reduccion de resistencia en $\phi = 0.9$ para flexión y $\phi = 0.85$ para corte.

Tabla 5.2: Propuesta de modificatoria a las combinaciones de carga. Fuente: Propia

5.2. Recomendaciones.

Según los temas abordados en esta investigación se recomienda lo siguiente:

- Realizar controles de calidad a los materiales de construcción con el fin de asegurar el buen comportamiento de las estructuras de concreto.
- Obtener datos a nivel nacional de la resistencia a compresión del concreto con la finalidad de hallar un valor característico de esta variable.
- Llevar a cabo una investigación para determinar el peso especifico del concreto que este acorde a los materiales usados en muestra región para la fabricación de este material.

 Realizar investigaciones del comportamiento de la carga viva con la finalidad de ir actualizando estos valores según el tipo de estructuras.

5.3. Lineas Futuras de Investigación.

Se recogen en esta sección algunas sugerencias sobre futuros trabajos de investigación que pueden tomar como base el trabajo desarrollado en esta tesis. A lo largo de este trabajo se ha mencionado algunos aspectos relacionados con el peso especifico del concreto, cargas vivas de diseño, indices de confiabilidad, por lo que a raíz de estos temas podemos mencionar algunos conceptos que no fueron tratados en esta tesis:

- El peso especifico del concreto fue tomado de trabajos desarrolladas por investigadores extranjeros, por lo cual surge la necesidad de realizar un estudio de este tema que se ajuste al contexto de nuestro territorio.
- En el estudio de las cargas vivas de diseño se llego a mencionar un tema referido a la Ley de Reducción de Cargas, por lo cual a partir de los datos de este trabajo de investigación se puede llegar a desarrollar una ley de reducción de carga diferente a la propuesta en el RNE.
- En el análisis de confiabilidad no se estudió las combinaciones de diseño para el caso de las acciones de viento, debido a que estas no tienen mucho efecto en las edificaciones de concreto armado, pero si presentan un gran impacto en las estructuras de acero, por lo cual partiendo de lo desarrollado en esta investigación se puede realizar un análisis de confiabilidad de estas combinaciones de diseño.
- El análisis de los indices de confiabilidad está ligado con modelos desarrollados en el rango lineal de los materiales, y no se considera la no-linealidad de estos elementos.
Referencias Bibliográficas

- Requisitos de Reglamento Para Concreto Estructural ACI 318s 14. American Concrete Institute, Farmington Hill, Michigan, USA. American Concrete Institute, 2014, Pagina. (64-65).
- [2] Coronel Uriona, María Carmen. Tesis de Antegrado Calibración basada en confiabilidad de la primera hipótesis de diseño de la norma técnica E060, 2003, Pagina. (3-10).
- [3] Ministerio de Vivienda Construccion y Saneamiento. Reglamento Nacional de Edificaciones. Empresa Editora Macro E.I.R.L. - Perú - 5ta. edición, Perú, 2013, Pagina. (433).
- [4] Meli Piralla, Roberto. Diseño Estructural. Universidad Nacional Autónoma de México, Grupo Noriega Editores, 2001, Pagina (103).
- [5] Celorrio Barragué, Luis. Tesis Doctoral Metodologia Eficiente de Optimizacion de Diseño Basado en Fiabilidad Aplicada a Estructuras, 2013, Pagina. (1).
- [6] Sobol, I.M. A Primer for the Monte Carlo Method. CRC Press, 1994.
- [7] García Calle, Becky. Tesis de Antegrado Aplicación del análisis de confiabilidad en estructuras hidráulicas, Dren Sullana, 2005, Pagina. (35).
- [8] Breitung, K. Asymptotic approximation for multinormal integrals. Journal of Engineering Mechanics, ASCE, 110, 3, 1984, Pagina. (357-366).

- [9] De Stefano, M. Der Kiureghian, A. Efficient algorithms for second order reliability analysis. Journal of Engineering Mechanics, ASCE, 117, 12, 1984, Pagina. (2906-2923).
- [10] Alamilla López, Jorge Luis. Tesis Doctoral Crieterios de Diseño Sísmico Basados en Confiabilidad para Estructuras Aporticadas, 2001, Pagina. (56).
- [11] Gutierréz Castillo, Eric. Tesis de Maestria Ley de Reducción General de Cargas Vivas Máximas en Función del Área, Para el Diseño de Edificaciones, 2013, Pagina. (4).
- [12] S. E., Ruiz J. A., Soriano. Tesis de Maestria Análisis Teórico sobre Cargas Vivas en Edificios, 1996.
- [13] C. A., Cornell. J. C., Pier. Spatial and Temporal Variability of Live Loads. Journal of the Structural Division, ASCE, Vol. 99, N° ST5, Proc., 1973, Pagina. (9747).
- [14] C. G., Culver. B. R., Ellinwood. Analysis of Live Loads in Office Buildings. Journal of the Structural Division, ASCE, Vol. 103, N° ST8, Proc., 1977, Pagina. (13109).
- [15] C. A., Cornell. G. R., McGuire. Live Load Effects in Office Buildings. Journal of the Structural Division, ASCE, Vol. 100, N° ST7, Proc., 1974, Pagina. (10660).
- [16] C. A., Cornell. J. R., Benjamin. Probability statistics and decision for civil engineers. McGraw Hill, 1970.
- [17] R. B., Corotis. L. P., Chalk. Probability Model for Desing Live Loads. Journal of the Structural Division, ASCE, N° ST10, Proc., 1980, Pagina. (15753).
- [18] Brown Russell, H. McCormac, Jack C. Diseño de Concreto Reforzado. Alfa y Omega. - 8th. Edition, 2011, Pagina. (150).

- [19] Zapata Baglietto, Luis. Diseño Estructural en Acero. Lima. 1th. Edition, 1980, Pagina. (1-7).
- [20] Requisitos de Reglamento Para Concreto Estructural ACI 318-99. American Concrete Institute, Farmington Hill, Michigan, USA. American Concrete Institute, 1999, Pagina. (92-93).
- [21] Minimum Design Loads for Buildings and Other Structures ASCE/SEI 7-10. American Society of Civil Engineers, Structural Engineering Institute. American Society of Civil Engineers, 2010, Pagina. (7-8).
- [22] Brown Russell, H. McCormac, Jack C. Design of Reinforced Concrete. Wiley. 9th. Edition, 2014, Pagina. (82).
- [23] Collins, Kevin R. Nowak, Andrzej S. Reliability of Structures. McGraw Hill. 1th. Edition, 2000, Pagina. (91).
- [24] Ottazzi Pasino, Gianfranco. Tesis de Maestria Material de Apoyo para la Enseñanza de los Cursos de Diseño y Comportamiento del Concreto Armado, 2004, Pagina. (52-54).
- [25] Puckett, Jay A. Barker, Richard M. Design of Highway Bridges An LRFD Approach. Wiley. - 2th. Edition, 2007, Pagina. (118).
- [26] León Ávila, Nikhy J. Ramírez Coria, Paola E. Tesis de Antegrado Apoyo Didactico en la Asignatura de Puentes CIV 312 Texto Estudiante, 2010, Pagina. (33-42).
- [27] Abou Jaoude, Grace. Foye, Kevin. Diseño de Fundaciones Profundas por Estados Límites. Universidad de Purdue. - 1th. Edition, 2004, Pagina. (36).

- [28] Harmsen, Teodoro E. Diseño de estructuras de concreto armado. Departamento de Ingeniería Civil. Pontificia Universidad Católica del Perú - 3ra. edición, 2002, Pagina. (81).
- [29] Al-Manaseer, Akthem. Nadim Hassoun, M.. Structural Concrete Theory and Design. John Wiley Sons, Inc., Hoboken, New Jersey.- 6th. Edition, 2015, Pagina. (188).
- [30] Branson, Dan E. Deflexiones de estructuras de concreto reforzado y presforzado. Instituto Mexicano del Cemento y del Concreto, 1978.
- [31] MacGregor, James G. Wight, James K. Reinforced concrete. Pearson Eduaction, Inc., USA, 2009, Página. (435).
- [32] F. Z. Yao R. O. Foschi, B. R. Folz. Reliability-based design of wood structures. Departamento de Ingeniería Civil. Universidad de Columbia Británica, Vancouver, Canadá, 1989.
- [33] R., Meli. Bases para los Criterios de Diseño Estructural del Proyecto del Reglamento de Construcciones para el Distrito Federal. Serie Azul del Instituto de Ingeniería, UNAM. Nº 375, 1976, Pagina. (136-157).
- [34] Yusuke Honjo. Determination of partial factors for vertically loaded piles for a seismic loading condition based on reliability theory. JCSS, Workshop on Reliability Based Code Calibration, 2000.
- [35] Tocto Correa, Jorge Mario. Tesis de Antegrado Análisis de confiabilidad estructural de vigas prefabricadas, 2009.
- [36] Et al. B. R., Ellinwood. Development of a Probability Based Load Criterion for American National Standard A58. NBS Special Report 577, U.S. Department of Commerce, National Bureau of Standards., 1980, Pagina. (96).

- [37] Aguiar Falconi, Roberto. Analisis Matricial de Estructuras. CEINCE-ESPE. 3th. Edition, 2004, Pagina. (324).
- [38] Seismic Evaluation and Retrofit of Existing Buildings ASCE/SEI 41-13. American Society of Civil Engineers, Structural Engineering Institute. American Society of Civil Engineers, 2013.
- [39] Prestandard and Commentary for the Seismic Rehabilitation of Buildings FE-MA 356. American Society of Civil Engineers. American Society of Civil Engineers, 2000.
- [40] Aguiar Falconi, Roberto. Análisis Sísmico por Desempeño. CEINCE-ESPE. 1th. Edition, 2003.
- [41] Aguiar Falconi, Roberto. Análisis Sísmico de Edificios. CEINCE-ESPE. 1th.
 Edition, 2008, Pagina. (72-73).
- [42] Toledo Espinoza, Vlacev. Ingenieria Sismica Basada en Desempeño PBEE Aplicada a Edificios de Concreto Armado. Comunidad Para la Ingenieria Civil. -1th. Edition, 2011. Pagina. (2-15).
- [43] Taipe Carbajal, Javier Fransisco. Tesis de Maestria Criterios de Diseño por Desempeño Para la Norma Peruana de Diseño Sismorresistente, 2003, Pagina. (74).
- [44] Freund, J. E. Miller, I. Probabilidad y estadística para ingenieros. Prentice Hall Hispanoamericana, 1986, Pagina. (91).
- [45] Neville, A. M. Kennedy, J. B. Estadística para ciencias e ingeniería. Editorial Harla. México D. F., 1982.
- [46] Probabilidad y estadística para ingenieros. Walpole, R. ,Myers, R. Pearson Educación de México, S.A. de C.V. - 9na. edición, 2012.

Apéndice A

Diagramas de Flujo y Códigos de Programación.

Se muestran los diagramas de flujo de los programas elaborados en MatLab.

```
Listing A.1: Análisis de Confiabilidad para Flexión
1 function Setup
2 clc
3 fprintf('\n-----');
4 fprintf('\n
             ANALISIS DE CONFIABILIDAD EN FLEXION');
5 fprintf('\n "ANALISIS FORM/SORM PARA UNA VIGUETA T DEL ALIGERADO"')
     ;
6 fprintf('\n BACH. ING. MAX JUNIOR CARDENAS ALARCON');
7 fprintf('\n-----');
 % ENTRADA DE DATOS %
9
10
11 %CUANTIA DE ACERO CALCULADA
12 fprintf('\n ');
13 fprintf('\nCUANTIA DE ACERO');
14 cuantiamx=input('\n C ?:');
```

193

```
fprintf(' cuantiamx=%0.8f [Cuantia]\n',cuantiamx);
15
16
   %ANCHO DE LA BASE
17
   basemx=0.4;
18
   fprintf(' basemx=%0.2f [metros]\n',basemx);
19
20
21
   %PERALTE EFECTIVO
  peraltemax=0.17;
22
   fprintf(' peraltemax=%0.2f [metros]\n', peraltemax);
23
24
   % TOLERANCIA EN EL CALCULO DEL INDICE B Y LA FALLA
25
   dz=10^-5;
26
   dB=10^-4;
27
28
   % DEFINIR ECUACION DE LA FUNCION LIMITE
20
  LimitStateFunction=@(x) cuantiamx*x(4)*(1-0.59*cuantiamx*x(4)/x(3))*
30
      basemx*(peraltemax^2) - 1.76*(x(1)+x(2))
31
   % VARIABLES ESTADISTICAS
32
33 Mean_X=[0.12 0.096 2426.1 49459.3];
34 fprintf(' Valor Medio=%0.5f [ton/m]\n',Mean_X);
35 SD_X=[0.0096 0.01728 403.1 2779.1];
  fprintf(' Desviacion Estandar=%0.5f [ton/m]\n',SD_X);
36
37
   % Choose variables distribution: for Normal=1, LogNormal=2,
38
      GumbelMax=3, WeibullMin=4, %Uniform=5
39 Dist_X=[1 3 1 1];
  Cor_X=[1,0,0,0; 0,1,0,0; 0,0,1,0;0,0,0,1]; % or use Cor_X=eye(length
40
      (Mean_X))
41 NatafTransform=0;
42
  %%% Solutions
43
  [ProbabilityOfFailure_FORM, HL_ReliabilityIndex, Alfa_Z, DesignPoint_Z,
44
```

```
DesignPoint_X,GradientVector]=ReliabilityByFORM(
LimitStateFunction,dz,dB,Mean_X,SD_X,Dist_X,Cor_X,NatafTransform)
45 DesignPoint_Z=DesignPoint_Z;
46 [ProbabilityOfFailure_SORM,SORM_ReliabilityIndex,Alfa_Z,
GradientVector,HessianMatrix]=ReliabilityBySORM(
LimitStateFunction,DesignPoint_Z,dz,Mean_X,SD_X,Dist_X,Cor_X,
NatafTransform)
47 48 end
```

Listing A.2: Análisis de Confiabilidad para Cortante

```
1 function Setup
2 clc
3 fprintf('\n------');
4 fprintf('\n
                    ANALISIS DE CONFIABILIDAD EN CORTE');
5 fprintf('\n "ANALISIS FORM/SORM PARA UNA VIGUETA T DEL ALIGERADO"')
     ï
6 fprintf('\n
                  BACH. ING. MAX JUNIOR CARDENAS ALARCON');
  fprintf('\n------');
7
8
  % ENTRADA DE DATOS %
9
10
  %RESULTADO DEL PRODUCTO DE bw*d
11
12 fprintf('\n ');
13 fprintf('\nPRODUCTO DE bwd');
 ptbwdmx=input('\n bwd [Centimetros^2] ?:');
14
  fprintf(' ptbwdmx01=%0.2f [Cm^2]\n',ptbwdmx);
15
16
 % TOLERANCIA EN EL CALCULO DEL INDICE B Y LA FALLA
17
 dz=10^-5;
18
 dB=10^-4;
19
```

```
20
   % DEFINIR ECUACION DE LA FUNCION LIMITE
21
   LimitStateFunction=@(x) 0.53*ptbwdmx01*x(3)^0.5-2.92*(x(1)+x(2))
22
23
   % VARIABLES ESTADISTICAS
24
  Mean_X=[0.12 0.096 2426.1];
25
  fprintf(' Valor Medio=%0.5f [ton/m]\n',Mean_X);
26
  SD_X=[0.0096 0.01728 403.1];
27
  fprintf(' Desviacion Estandar=%0.5f [ton/m]\n',SD_X);
28
29
   % Choose variables distribution: for Normal=1, LogNormal=2,
30
      GumbelMax=3, WeibullMin=4, %Uniform=5
31 Dist_X=[1 3 1];
  Cor_X=[1,0,0; 0,1,0; 0,0,1]; % or use Cor_X=eye(length(Mean_X))
32
  NatafTransform=0;
33
34
   %%% Solutions
35
  [ProbabilityOfFailure_FORM, HL_ReliabilityIndex, Alfa_Z, DesignPoint_Z,
36
      DesignPoint_X,GradientVector]=ReliabilityByFORM(
      LimitStateFunction, dz, dB, Mean_X, SD_X, Dist_X, Cor_X, NatafTransform)
37 DesignPoint_Z=DesignPoint_Z;
  [ProbabilityOfFailure_SORM,SORM_ReliabilityIndex,Alfa_Z,
38
      GradientVector,HessianMatrix]=ReliabilityBySORM(
      LimitStateFunction,DesignPoint_2,dz,Mean_X,SD_X,Dist_X,Cor_X,
      NatafTransform)
39
40
  end
```

Listing A.3: Análisis de Confiabilidad para Deflexión

```
1 function Setup
```

2 clc

```
3 fprintf('\n-----');
 4 fprintf('\n
                ANALISIS DE CONFIABILIDAD EN DEFLEXION');
 5 fprintf('\n "ANALISIS FORM/SORM PARA UNA VIGUETA T DEL ALIGERADO"')
      ;
 6 fprintf('\n
                   BACH. ING. MAX JUNIOR CARDENAS ALARCON');
7 fprintf('\n-----');
Q
  % ENTRADA DE DATOS %
9
10
11 %INERCIA EFECTIVA (D+L)
12 fprintf('\n ');
13 fprintf('\nINERCIA EFECTIVA (D+L)');
iefectdlmx=input('\n Ie(D+L) [cm^4] ?:');
15 fprintf(' iefectdlmx01=%0.8f [metros^4]\n',iefectdlmx02);
16
17 %LUZ DE LA VIGA
18 lzvgmx=3.5;
19 fprintf(' lzvgmx=%0.5f [metros]\n',lzvgmx);
20
21 %LUZ DE LA VIGA RNE
22 lzvgrnemx=3.5+0.2;
23 fprintf(' lzvgrnemx=%0.5f [metros]\n',lzvgrnemx);
24
25 %FACTOR DE TIEMPO
26 ftrnemx=2;
27 fprintf(' ftrnemx=%0.5f [Años]\n',ftrnemx);
28
29 %CUANTIA DE ACERO COMPRESION
30 cuantiamx=0;
31 fprintf(' cuantiamx=%0.5f [Cuantia]\n',cuantiamx);
32
33 %INERCIA EFECTIVA (D)
34 iefectdmx=11800.6/10000000;
```

```
35
   fprintf(' iefectdmx=%0.8f [metros^4]\n',iefectdmx);
36
   % TOLERANCIA EN EL CALCULO DEL INDICE B Y LA FALLA
37
   dz=10^-5;
38
   dB=10^-4;
39
40
   % DEFINIR ECUACION DE LA FUNCION LIMITE
41
42 LimitStateFunction=@(x) (lzvgrnemx/480)-(((5*lzvgmx^4)/(48*8*15000*x
       (3)^0.5))*(((ftrnemx)/(1+50*cuantiamx))*(((3*x(1))/(5*iefectdmx))
      + (((2 \star (x(1) + x(2))) / (5 \star iefectdlmx01)))) + (((x(1) + x(2)) / (
      iefectdlmx01) - ((x(1)) / (iefectdmx))))
43
  % VARIABLES ESTADISTICAS
44
  Mean_X=[0.12 0.096 2426.1];
45
  fprintf(' Valor Medio=%0.5f [ton/m]\n',Mean_X);
46
  SD_X=[0.0096 0.01728 403.1];
47
  fprintf(' Desviacion Estandar=%0.5f [ton/m]\n',SD_X);
48
49
   % Choose variables distribution: for Normal=1, LogNormal=2,
50
      GumbelMax=3, WeibullMin=4, %Uniform=5
51 Dist_X=[1 3 1];
  Cor_X=[1,0,0; 0,1,0; 0,0,1]; % or use Cor_X=eye(length(Mean_X))
52
  NatafTransform=0;
53
54
   %%% Solutions
55
  [ProbabilityOfFailure_FORM, HL_ReliabilityIndex, Alfa_Z, DesignPoint_Z,
56
      DesignPoint_X,GradientVector]=ReliabilityByFORM(
      LimitStateFunction, dz, dB, Mean_X, SD_X, Dist_X, Cor_X, NatafTransform)
  DesignPoint_Z=DesignPoint_Z;
57
  [ProbabilityOfFailure_SORM, SORM_ReliabilityIndex, Alfa_Z,
58
      GradientVector,HessianMatrix]=ReliabilityBySORM(
      LimitStateFunction, DesignPoint_Z, dz, Mean_X, SD_X, Dist_X, Cor_X,
      NatafTransform)
```

Apéndice A. Diagramas de Flujo y Códigos de Programación.

```
59
60 end
```

```
1 function Setup
2 clc
3 fprintf('\n-----');
4 fprintf('\n
                   ANALISIS DE CONFIABILIDAD EN DISTORSION');
5 fprintf('\n
                "ANALISIS FORM / SORM PARA UN PORTICO SIMPLE"');
6 fprintf('\n
                    BACH. ING. MAX JUNIOR CARDENAS ALARCON');
  fprintf('\n-----');
7
8
  % ENTRADA DE DATOS %
9
10
  %FACTOR DE INERCIA
11
 fprintf('\n ');
12
13 fprintf('\nFACTOR DE INERCIA');
 inercreqzs=input('\n ZS/Ir [1/cm^4] ?:');
14
15 fprintf(' inercreqzs01=%0.8f [1/metros^4]\n',inercreqzs02);
16
  SALTURA DEL PORTICO
17
 altportmx=3.5;
18
  fprintf(' altportmx=%0.5f [metros]\n',altportmx);
19
20
21 %FACTOR U
22 factorumx=1.5;
  fprintf(' factorumx=%0.5f [RNE-E030]\n', factorumx);
23
24
  %FACTOR C
25
 factorcmx=2.5;
26
27 fprintf(' factorcmx=%0.5f [RNE-E030]\n',factorcmx);
```

Listing A.4: Análisis de Confiabilidad para Distorsión Modelo 01

```
28
   %FACTOR R
29
  factorrmx=8;
30
   fprintf(' factorrmx=%0.5f [RNE-E030]\n', factorrmx);
31
32
   % TOLERANCIA EN EL CALCULO DEL INDICE B Y LA FALLA
39
  dz=10^-5;
34
   dB=10^-4;
35
36
37
   % DEFINIR ECUACION DE LA FUNCION LIMITE
38 LimitStateFunction=@(x) (0.007*altportmx)-inercreqzs01*(factorumx*
      factorcmx/factorrmx) * (x(1) + x(2)/2) * ((altportmx^3)/(24*15000*x(3)))
      (0.5)
39
  % VARIABLES ESTADISTICAS
40
41 Mean_X=[0.300 0.240 2426.1];
42 fprintf(' Valor Medio=%0.5f [ton/m]\n',Mean_X);
43 SD_X=[0.024 0.0432 403.1];
  fprintf(' Desviacion Estandar=%0.5f [ton/m]\n',SD_X);
44
45
   % Choose variables distribution: for Normal=1, LogNormal=2,
46
      GumbelMax=3, WeibullMin=4, %Uniform=5
47 Dist_X=[1 3 1];
  Cor_X=[1,0,0; 0,1,0; 0,0,1]; % or use Cor_X=eye(length(Mean_X))
48
  NatafTransform=0;
49
50
  %%% Solutions
51
  [ProbabilityOfFailure_FORM, HL_ReliabilityIndex, Alfa_2, DesignPoint_2,
52
      DesignPoint_X,GradientVector]=ReliabilityByFORM(
      LimitStateFunction, dz, dB, Mean_X, SD_X, Dist_X, Cor_X, NatafTransform)
53 DesignPoint_Z=DesignPoint_Z;
54
  [ProbabilityOfFailure_SORM, SORM_ReliabilityIndex, Alfa_Z,
      GradientVector, HessianMatrix] = ReliabilityBySORM (
```

```
LimitStateFunction,DesignPoint_Z,dz,Mean_X,SD_X,Dist_X,Cor_X,
NatafTransform)
55
56 end
```

```
Listing A.5: Análisis de Confiabilidad para Distorsión Modelo 02
1 function Setup
2 clc
3 fprintf('\n------')
     ;
4 fprintf('\n ANALISIS DE CONFIABILIDAD EN DISTORSION MODELO 02');
5 fprintf('\n "ANALISIS FORM / SORM PARA UN PORTICO SIMPLE"');
                   BACH. ING. MAX JUNIOR CARDENAS ALARCON');
6 fprintf('\n
7 fprintf('\n-----')
     ï
8
  % ENTRADA DE DATOS %
9
10
11 %FACTOR DE INERCIA
12 fprintf('\n ');
13 fprintf('\nFACTOR DE INERCIA');
int intercreqzs=input('\n ZS/Ir [1/cm^4] ?:');
15 fprintf(' inercreqzs01=%0.8f [1/metros^4]\n',inercreqzs02);
16
17 %ALTURA DEL PORTICO
18 altportmx=3.0;
19 fprintf(' altportmx=%0.5f [metros]\n',altportmx);
20
21 %FACTOR U
22 factorumx=1.5;
23 fprintf(' factorumx=%0.5f [RNE-E030]\n',factorumx);
```

```
24
  &FACTOR C
\mathbf{25}
26 factorcmx=2.5;
  fprintf(' factorcmx=%0.5f [RNE-E030]\n',factorcmx);
\mathbf{27}
28
   FACTOR R
29
  factorrmx=8;
30
  fprintf(' factorrmx=%0.5f [RNE-E030]\n', factorrmx);
31
32
  % TOLERANCIA EN EL CALCULO DEL INDICE B Y LA FALLA
33
34 dz=10^-5;
  dB=10^-4;
35
36
  % DEFINIR ECUACION DE LA FUNCION LIMITE
37
38 LimitStateFunction=@(x) (0.007*altportmx)-((1451.25*(x(1)+x(2)/2))
      /(1984*15000*x(3)^0.5))*inercreqzs01
39
40 % VARIABLES ESTADISTICAS
41 Mean_X=[0.300 0.240 2426.1];
42 fprintf(' Valor Medio=%0.5f [ton/m]\n',Mean_X);
43 SD_X=[0.024 0.0432 403.1];
  fprintf(' Desviacion Estandar=%0.5f [ton/m]\n',SD_X);
44
45
  % Choose variables distribution: for Normal=1, LogNormal=2,
46
      GumbelMax=3, WeibullMin=4, %Uniform=5
47 Dist_X=[1 3 1];
  Cor_X=[1,0,0; 0,1,0; 0,0,1]; % or use Cor_X=eye(length(Mean_X))
48
49 NatafTransform=0;
50
51 %%% Solutions
52 [ProbabilityOfFailure_FORM, HL_ReliabilityIndex, Alfa_Z, DesignPoint_Z,
      DesignPoint_X,GradientVector]=ReliabilityByFORM(
      LimitStateFunction, dz, dB, Mean_X, SD_X, Dist_X, Cor_X, NatafTransform)
```

```
53 DesignPoint_Z=DesignPoint_Z;
54 [ProbabilityOfFailure_SORM, SORM_ReliabilityIndex, Alfa_Z,
GradientVector, HessianMatrix]=ReliabilityBySORM(
LimitStateFunction, DesignPoint_Z, dz, Mean_X, SD_X, Dist_X, Cor_X,
NatafTransform)
55
56 end
```

Listing A.6: Análisis de Carga Viva por Simulación de Monte Carlo - Modificado de

Eric Gutierrez Castillo

```
1 fprintf('\n------
     1);
2 fprintf('\n ANALISIS DE CARVA VIVA PARA DISTINTOS USOS');
3 fprintf('\n "SIMULACION DE MONTE CARLO PARA LA CARGA VIVA MAXIMA"')
     ;
4 fprintf('\n
                  BACH. ING. MAX JUNIOR CARDENAS ALARCON');
5 fprintf('\n------
     ; ( ۱
6
7 % ENTRADA DE DATOS %
9 %PERIODO DE RETORNO DE LAS CARGAS VIVAS
10 fprintf('\n ');
11 fprintf('\nPERIODO DE RECURRENCIA DE LAS CARGAS VIVAS');
12 TR=input('\n Tr [años] ?:');
13 fprintf(' Tr=%0.2f [años]\n',TR);
14 %INDICE DE CAMBIOS DE OCUPACION DE CARGAS SOSTENIDAS
15 fprintf('\nINDICE DE CAMBIOS DE OCUPACION DE CARGAS SOSTENIDAS');
16 VS=input('\n Vs [1/años] ?:');
17 fprintf(' Vs=%0.2f [1/años]\n',VS);
18 %MEDIA DEL TIEMPO DE OCUPACION DE LAS CARGAS SOSTENIDAS
```

```
19 XM=1/VS;
20 %INDICE DE CAMBIOS DE OCUPACION DE CARGAS EXTRAORDINARIAS
21 fprintf('\nINDICE DE CAMBIOS DE OCUPACION DE CARGAS EXTRAORDINARIAS'
      );
22 VEX=input('\n Vex [1/años] ?:');
23 fprintf(' Vex=%0.2f [1/años]\n',VEX);
  MEDIA DE LAS CARGAS SOSTENIDAS
24
25 fprintf('\nMEDIA DE LAS CARGAS SOSTENIDAS');
26 ULSS=input('\n ULs [kg/m^2] ?:');
27 fprintf(' ULs=%0.2f [kg/m^2]\n',ULSS);
28 ULSS=ULSS*(1/(3.28<sup>2</sup>))*(1/0.454);
  %ORDENADA AL ORIGEN DE LA RECTA DE LA VARIANZA AJUSTADA
29
30 %OBTENIDA DE LOS RESULTADOS EXPERIMENTALES
31 fprintf('\nORDENADA AL ORIGEN DE LA RECTA DE LA VARIANZA AJUSTADA');
32 SA2=input('\n Sa [(kg/m^2)^2] ?:');
33 fprintf(' Sa=%0.2f [(kg/m^2)^2]\n',SA2);
34 SA2=SA2*((1/(3.28^2))^2*(1/0.454)^2);
35 if SA2 \le 0
36 SA2=0;
37 end
  %PENDIENTE DE LA RECTA DE LA VARIANZA AJUSTADA
38
39 fprintf('\nPENDIENTE DE LA RECTA DE LA VARIANZA AJUSTADA');
40 SS2=input('\n Ss [kg^2/m^2]p ?:');
41 fprintf(' Ss=%0.2f [kg^2/m^2]p\n',SS2);
42 SS2=SS2*(1/(3.28<sup>2</sup>))*(1/0.454)<sup>2</sup>;
43 %PROBABILIDADES DE EXCEDENCIA
44 PE=input('\nDEFINA LA PROBABILIDAD DE EXCEDENCIA [%]?:');
45 fprintf(' PROBABILIDAD DE EXCEDENCIA=%0.2f \n',PE);
46 PE=1-(PE/100);
  %NUMERO DE SIMULACIONES
47
48 NSIM=input('\nNÚMERO DE SIMULACIONES NSIM ?:');
  fprintf(' NSIM=%0.2f \n',NSIM);
49
50 fprintf('\n ');
```

```
51
   % DATOS PARA GENERAR LA CARGA VIVA EXTRAORDINARIA MAXIMA %
52
53
54
  %AREA DE INFLUENCIA DE LAS CARGAS VIVAS (EN ft^2)
55 AI(1)=200; AI(2)=300; AI(3)=40*(3.281^2); AI(4)=600; AI(5)=800; AI
      (6) = 1000;
56 AI(7)=1200; AI(8)=1400; AI(9)=1600; AI(10)=2000; AI(11)=2400; AI(12)
      =2800;
  SLS=ones(1,length(AI)); CA=ones(1,length(AI));
57
58 UEX=ones(1,length(AI)); SEX=ones(1,length(AI));
59 DEX=ones(1,length(AI)); ULS=ones(1,length(AI));
60 LMDA=ones(1, length(AI)); A=ones(1, length(AI));
61 %CICLO SOLO PARA DEFINIR A LA MEDIA COMO UN VECTOR.
62 for i=1:length(AI)
63 ULS(i)=ULSS;
  end
64
  %CICLO PARA DEFINIR LOS PARAMETROS DE ENTRADA DE CADA AREA Y LA
65
      SIMULACION
   %PARA CADA UNA DE LAS AREAS DADAS
66
  for i=1:length(AI)
67
       %REPRESENTAN CONSTANTES EXPERIMENTALES DE DATOS DE CARGAS VIVAS
68
   %(ESTAS CONSTANTES PERMITEN DETERMINAR EL CAMBIO DE LA VARIANZA
69
  %CON EL AREA Sa Y Ss)
70
   %CK CONVIERTE LA CARGA A UN VALOR EQUIVALENTE UNIFORMENTE
71
      DISTRIBUIDO
72 CK=2.2;
73
  %DESVIACION ESTANDAR
74 SLS(i) = sqrt(SA2+((CK*SS2)/AI(i)));
  *REPRESENTAN LA MEDIA Y LA DESVIACION ESTANDAR DEL PESO DE UNA
75
      PERSONA
76 UW=150;
  SW=25;
77
78
   &REPRESENTAN LA MEDIA Y LA DESVIACION ESTANDAR DEL NUMERO DE
```

```
*PERSONAS QUE SE ENCUENTRAN ENTRE UN AREA DE 300 Y 670 ft^2.
79
  UR=4;
80
81 SR=2;
   SEL NUMERO DE CARGAS EN UN AREA DADA CA, ESTA DADA POR:
82
83 CA(i) = sqrt((AI(i) - 155)/6.3);
   %ESTAS ECUACIONES PERMITEN DETERMINAR LA MEDIA Y LA DESVIACION
84
   SESTANDAR DE LA CARGA VIVA EXTRAORDINARIA
85
86 UEX(i) = (CA(i) \starUW \starUR)/AI(i);
87 SEX(i)=sqrt((CA(i)*CK*((UR*SW^2)+(UW^2*SR^2)+(UW^2*UR^2)))/(AI(i)^2)
       );
88 DEX(i) = SEX(i) / UEX(i);
89
   % IMPORTANTE: SE TOMARON ULS Y SLS PARA OBTENER LOS PARAMETROS %
90
   % LAMBDA Y K DE LA FUNCION GAMMA %
91
92
   %LAMDA
93
  LMDA(i) = ULS(i) / (SLS(i)^2);
94
  %FACTOR DE FORMA
95
96 A(i) = (ULS(i)^2) / (SLS(i)^2);
97 fprintf(' Calculando ...\n');
  &ACUMULADOS PARA OBTENER LA MEDIA DE LOS VALORES MAXIMOS ESTIMADOS
98
99 SUMY=0; %ACUMULADOR DE C. EXTRAORDINARIAS
100 SUMLS=0; %ACUMULADOR DE C. SOSTENIDAS
  SUMCL=0; %ACUMULADOR DE CARGA TOTAL
101
   CONT=0; %CONTADOR
102
1103
   % INICIA EL PROCESO DE GENERACION DE NSIM SIMULACIONES %
104
105
   for j=1:NSIM %CICLO DE SIMULACION DE CARGAS PARA CADA AREA DADA
106
  clear T SUMA ALEAT R C1 C2 P UEM SEM ALFA
1107
108 clear UM Y CL
  $INICIACION DEL VECTOR DE TIEMPO ENTRE EVENTOS Y TIEMPOS ACUMULADOS
109
  SUMA(1) = 1;
110
```

```
III T(1) = SUMA(1);
112 %PARAMETRO PARA DEFINIR LA LONGITUD DE LOS VECTORES DE # ALEATORIOS
113 NR=1000;
114 %SE GENERAN TIEMPOS ALEATORIOS CON DISTRIBUCION EXPONENCIAL Y CON
115 %MEDIA XM OBTENIDA DEL INDICE DE CAMBIOS DE OCUPACION XM=1/VS
116 Ta=exprnd(XM, 1, NR);
117 %SE GENERA UN VECTOR DE TIEMPOS ACUMULADOS
118 for k=2:NR
119 SUMA(k) = SUMA(k-1) + Ta(k);
120 end
121 %SELECCION DE TIEMPOS ENTRE EL PERIODO DE RECURRENCIA
122 for k=2:NR
123 if (TR-SUMA(k)) \ge 0
124 T(k) = Ta(k);
125 else
126 T(k) = TR - SUMA(k-1);
127 break
128 end
   end
129
130
   % GENERA NUMEROS ALEATORIOS ENTRE (0,1) %
131
132
133 RU=unifrnd(0,1,[1,NR]);
134 % VECTOR NECESARIO PARA DEFINIR LA CARGA EXTRAORDINARIA MAXIMA
135 % MEDIANTE LA FUNCION EXTREMA TIPO I
136 for m=1:k
137 ALEAT (m) = RU(m);
138 end
139
140 % GENERA LA CARGA SOSTENIDA S(t) EN UN PUNTO ARBITRARIO EN EL TIEMPO
        응
141
142 RR=gamrnd(A(i),1/LMDA(i),[1,NR]);
```

```
143 for m=1:k
144 R (m) = RR (m);
   end
145
146
   % EN ESTE CICLO SE DETERMINA LA CARGA EXTRAORDINARIA MAXIMA.
147
       MEDIANTE %
   % UNA FUNCION EXTREMA TIPO I Y LA FORMULA MEJORADA DE WEN %
148
149
   *PARAMETROS PARA DEFINIR LA INFORMACION CON LA CUAL SE ESTIMA LA
150
151 &CARGA EXTRAORDINARIA MAXIMA Y TOTAL MAXIMA DE CADA SIMULACION
152 SUPT=0;
153 SUPY(j)=0;
   SUPRND=0;
154
   SUPU=0;
155
  SUPA=0;
156
  SUPLS(j) = 0;
157
  SUPCL(j) = 0;
158
159 for m=1:k
160 %APLICACION DE LAS FORMULAS MEJORADAS DE WEN
161 %CONSTANTES C1 Y C2 PARA REDUCIR LA EC. DE P.
162 C1(m) = (sqrt(6)/pi) * (log(VEX*T(m)));
  C2(m) = (1+(C1(m) * DEX(i))) / ((2*DEX(i)) + C1(m));
163
   %FACTOR P
164
165 P(m) = C1(m) * (1+(0.1*(DEX(i)^3)));
   MEDIA DE LA CARGA EXTRAORDINARIA MAXIMA
1166
167 UEM(m) = UEX(i) + (P(m) \star SEX(i));
   %DESVIACION DE LA CARGA EXTRAORDINARIA MAXIMA
168
  SEM(m)=UEX(i)*DEX(i)*1.282*C2(m);
169
  %FACTOR ALFA
170
171 ALFA(m)=1.282/SEM(m);
172 if (ALFA(m) ≤ 1E - 06)
173 continue
174 else
```

```
175 UM (m) = UEM (m) - (0.5772/ALFA (m));
176 if (UM(m)≤1E-06)
177 continue
178 else
179 Y(m)=UM(m)-((log(-log(ALEAT(m))))/ALFA(m));
180 if (Y(m)≤1E-06)
181 continue
182 else
183 %CARGA TOTAL = CARGA SOST + CARGA EXTRA MAX
184 CL(m) = Y(m) + R(m);
185 %EN ESTE IF SE SELECCIONA LA CARGA COMBINADA MAXIMA
186 %QUE RESULTA DE LOS "N" PROCESOS DE SIMULACION.
187 if (CL(m)≥SUPCL(j))
188 %SI SE CUMPLE LA CONDICION, SE DEFINEN LOS
189 %PARAMETROS QUE DEFINE LA CARGA MAXIMA
190 SUPT=T(m);
191 SUPY(j)=Y(m); %C. EXTRAORDINARIA MAXIMA
192 SUPRND=ALEAT (m);
193 SUPU=UM (m);
194 SUPA=ALFA(m);
195 SUPLS(j)=R(m); %C. SOSTENIDA PARA C.E.M
196 SUPCL(j)=CL(m); %CARGA TOTAL
197 else
198 %SI NO SE CUMPLE, SE MANTIENEN LOS PARAMETROS
199 %DE UNA SIMULACION ANTERIOR COMO MAXIMOS
200 SUPT=SUPT;
201 SUPY(j)=SUPY(j); %C. EXTRAORDINARIA MAXIMA
202 SUPRND=SUPRND;
203 SUPU=SUPU;
204 SUPA=SUPA;
205 SUPLS(j)=SUPLS(j); %C. SOSTENIDA PARA C.E.M
206 SUPCL(j)=SUPCL(j); %CARGA TOTAL
207 end
```

```
208
   end
   end
209
210 end
211 end
212 CONT=CONT+1;
213 %ESTAS VARIABLES ALMACENAN LOS VALORES QUE DEFINEN LA CARGA MAXIMA
214 SUPPY (CONT) = SUPY (j);
215 SUPPLS (CONT) = SUPLS (j);
216 SUPPCL (CONT) = SUPCL (j);
217 %ACUMULADORES DE CARGAS PARA OBTENER LA MEDIA DE LOS MAXIMOS
218 SUMY=SUMY+SUPPY(CONT);
219 SUMLS=SUMLS+SUPPLS(CONT);
220 SUMCL=SUMCL+SUPPCL(CONT);
221 end
222 %CALCULO DE LA MEDIA DE LAS CARGAS OBTENIDAS DE LA SIMULACION
223 UY(i)=SUMY/CONT; %CARGA EXTRAORDINARIA
224 USS(i)=SUMLS/CONT; %CARGA SOSTENIDA
225 UCL(i)=SUMCL/CONT; %CARGA TOTAL
226 SSY=0; %ACUMULADOR DE CARGAS EXTRAORDINARIAS
227 SSLS=0; %ACUMULADOR DE CARGAS SOSTENIDAS
228 SSCL=0; %ACUMULADOR DE CARGAS TOTALES
229 %CALCULO DE LA VARIANZA DE LAS CARGAS OBTENIDAS DE LA SIMULACION
230 for n=1:CONT
231 SSY=SSY+(SUPPY(n)-UY(i))^2;
232 SSLS=SSLS+(SUPPLS(n)-USS(i))^2;
233 SSCL=SSCL+(SUPPCL(n)-UCL(i))^2;
234 end
235 VLS(i)=(SSLS/CONT);
236 VY(i)=(SSY/CONT);
237 VCL(i)=(SSCL/CONT);
238 end
239 %CONVERSION DE UNIDADES DEL SUEU AL SISTEMA METRICO
240 AI=AI.*(1/(3.28^2));
```

Apéndice A. Diagramas de Flujo y Códigos de Programación.

```
241 ULS=ULS.*(3.28^2)*(0.454); SLS=SLS.*(3.28^2)*(0.454);
1242 UEX=UEX.*(3.28^2)*(0.454); SEX=SEX.*(3.28^2)*(0.454);
243 UY=UY.*(3.28^2)*(0.454); VY=VY.*((3.28^2)*(0.454))^2;
  USS=USS.*(3.28<sup>2</sup>)*(0.454); VLS=VLS.*((3.28<sup>2</sup>)*(0.454))<sup>2</sup>;
244
245 UCL=UCL.*(3.28^2)*(0.454); VCL=VCL.*((3.28^2)*(0.454))^2;
246 resp=[AI',ULS',SLS',UEX',SEX',UY',VY',USS',VLS',UCL',VCL'];
   %CALCULO DE LAS PROBABILIDADES DE EXCEDENCIA
247
  %CICLO SOLO PARA DEFINIR A LA MEDIA COMO UN VECTOR.
248
249 for i=1:length(AI)
250 Pe(i)=PE;
251 end
252 for i=1:length(AI)
253 %FACTORES ALFHA Y U
254 a(i)=sqrt(1.645/VCL(i));
u(i) = UCL(i) - (0.577/a(i));
256 %CARGA DE DISEÑO CON PROBABILIDA CONSTANTE
257 Wm(i)=u(i)-((log(-log(Pe(i))))/a(i));
258 end
259 for i=1:length(AI)
260 Pe(i) = (1 - Pe(i)) * 100;
261 end
262 pexc=[AI',UCL',VCL',a',u',Pe',Wm'];
263 fid=fopen('SIMULACION.RES','w+');
264 fprintf(fid,'\n------
      ----');
265 fprintf(fid, '\n
                        ANALISIS DE CARVA VIVA PARA DISTINTOS USOS');
266 fprintf(fid,'\n "SIMULACION DE MONTE CARLO PARA LA CARGA VIVA
      MAXIMA"');
267 fprintf(fid, '\n
                         BACH. ING. MAX JUNIOR CARDENAS ALARCON');
268 fprintf(fid,'\n------
      ----');
269 fprintf(fid, '\n ');
270 fprintf(fid, '\n DATOS DEL ANALISIS:');
```

```
271 fprintf(fid, '\n ');
272 fprintf(fid,' Tr=%0.2f [años]\n',TR);
273 fprintf(fid, ' Vs=%0.2f [1/años]\n',VS);
274 fprintf(fid, ' Vex=%0.2f [1/años]\n',VEX);
275 fprintf(fid, ' ULs=%0.2f [kg/m^2]\n',ULSS*(3.28^2)*(0.454));
276 fprintf(fid, ' Var[Ls] = Sa + Ss/A\n');
277 fprintf(fid,' Sa=%0.2f [(kg/m^2)^2]\n',SA2*((3.28^2)^2)*(0.454)^2);
278 fprintf(fid,' SS=%0.2f [kg^2/m^2]\n',SS2*(3.28^2)*(0.454)^2);
279 fprintf(fid,' Pe=%0.2f [Porcentaje]\n',PE*100);
280 fprintf(fid, '\n ');
281 fprintf(fid,'\n * RESULTADOS OBTENIDOS DE LA SIMULACIÓN * ');
282 for i=1:length(AI)
283 fprintf(fid,'\nAREA(m^2) ULs SLs Uex Sex...E[ext] Var[ext] E[1s] Var
       [ls] E[t] Var[t] \n');
284 for j=1:11
285 fprintf(fid,' %7.2f ',resp(i,j));
286 end
287 fprintf(fid,'\n \n');
288 end
289 fprintf(fid,'\n PROBABILIDADES DE EXCEDENCIA CON PARAMETRO CONSTANTE
       \n');
290 for i=1:length(AI)
291 fprintf(fid,'\n AREA(m^2) E[t] Var[t] a u Pe Wm \n');
292 for j=1:7
293 fprintf(fid,' %7.2f ',pexc(i,j));
294 end
295 fprintf(fid, '\n \n');
296 end
```


Figura A.1: Diagrama de flujo del programa FORM-SORM. Fuente: Propia.

Figura A.2: Diagrama de flujo del programa para Carga Viva. Fuente: Propia.

Apéndice B

Ensayos a Compresión.

Se muestran los reportes de ensayos a compresión que fueron recopilados en la ciudad de Ayacucho en diferentes obras y laboratorios de ensayos de materiales.

Figura B.1: Reporte de pruebas de compresión a 28 días $f'c = 210 \cdot kg/cm^2$, Laboratorio: Estrada Ingenieros.

.

Figura B.2: Reporte de pruebas de compresión a 28 días $f'c = 210 \cdot kg/cm^2$. Laboratorio: HHC Ingenieros Asociados

Figura B.3: Reporte de pruebas de compresión a 28 días $f'c = 210 \cdot kg/cm^2$. Laboratorio: Ingeotecon

Apéndice B. Ensayos a Compresión.

218

Figura B.4: Reporte de pruebas de compresión a 28 días $f'c = 210 \cdot kg/cm^2$. Laboratorio: Mixersur

Apéndice C

Análisis Estadistico de los Datos.

Se muestran los análisis estadísticos realizados a la resistencia de compresión del concreto y el esfuerzo de fluencia del acero.

E (1 - (£-				C /31	75 175	D D' ANT	D DIDIA			
Alcongodo	10 Freemonein	IO	fo Everyonale	IO Francia	IO/N	2 = (ic - u) / Des	F = Dist.N(z)	FX=F1-F1-1	Fe=Fx [*] u	to - te	$x^2 = (f_1, f_2) O(f_2)$
Intervalos	Observada	Acumulada	rrecuencia %	% A cum	N° de Datos	Normal Estan	Normal Acm	Normal	Frecuencia	F. Ubserv.	(IO-IE)2/IE
4300	()	n	0.00%	0.00%	a popopo	-2 324942	0.010056	0.010056	0.77	_0 77	0.77
4350	2	2	2.60%	2 60%	0.025974	-2.524242	0.016003	0.005047	0.46	1 54	5.10
4400	0	2	0.00%	2.60%	0.000000	-1 964413	0.024741	0.008738	0.10	-0.67	0.13
4450	1	3	1.30%	3.90%	0.012987	-1.784499	0.037171	0.012430	0.06	0.04	0.00
4500	0	3	0.00%	3.90%	0.000000	-1.604584	0.054293	0.017121	1.32	-1.32	1.32
4550	3	6	3.90%	7.79%	0.038961	-1.424670	0.077126	0.022834	1.76	1.24	0.88
4600	2	8	2.60%	10.39%	0.025974	-1.244755	0.106611	0.029484	2.27	-0.27	0.03
4650	3	11	3.90%	14.29%	0.038961	-1.064841	0.143474	0.036863	2.84	0.16	0.01
4700	3	14	3.90 %	18.18%	0.038961	-0.884927	0.188098	0.044624	3.44	-0.44	0.06
4750	4	18	5.19%	23.38%	0.051948	-0.705012	0.240401	0.052303	4.03	-0.03	0.00
4800	2	20	2.60 %	25.97%	0.025974	-0.525098	0.299758	0.059356	4.57	-2.57	1.45
4850	7	27	9.09%	35.06%	0.090909	-0.345184	0.364978	0.065221	5.02	1.98	0.78
4900	6	33	7.79%	42.86%	0.077922	-0.165269	0.434366	0.069388	5.34	0.66	0.08
4950	6	39	7.79%	50.63%	0.077922	0.014645	0.505842	0.071476	5.50	0.50	0.04
5000	10	49	12.99%	63.64%	0.129870	0.194559	0.577131	0.071289	5.49	4.51	3.71
5050	6	55	7.79%	71.43%	0.077922	0.374474	0.645974	0.068843	5.30	0.70	0.09
5100	3	58	3.90%	75.32%	0.038961	0.554388	0.710343	0.064369	4.96	-1.96	0.77
5150	5	63	6.49%	81.82%	0.064935	0.734302	0.768618	0.058274	4.49	0.51	0.06
5200	2	65	2.60%	84.42%	0.025974	0.914217	0.819699	0.051081	3.93	-1.93	0.95
5250	2	67	2.60%	87.01%	0.025974	1.094131	0.863051	0.043353	3.34	-1.34	0.54
5300	1	68	1.30 %	88.31%	0.012987	1.274046	0.898676	0.035625	2.74	-1.74	1.11
5350	2	70	2.60%	90.91%	0.025974	1.453960	0.927021	0.028345	2.18	-0.18	0.02
5400	3	73	3.90%	94.81%	0.038961	1.633874	0.948857	0.021836	1.68	1.32	1.03
5450	1	74	1.30 %	96.10%	0.012987	1.813789	0.965145	0.016287	1.25	-0.25	0.05
5500	0	74	0.00%	96.10%	0.000000	1.993703	0.976908	0.011763	0.91	-0.91	0.91
5550	0	74	0.00%	96.10%	0.000000	2.173617	0.985133	0.008225	0.63	-0.63	0.63
5600	2	76	2.60%	98.70%	0.025974	2.353532	0.990702	0.005569	0.43	1.57	5.76
5650	0	76	0.00%	98.70%	0.000000	2.533446	0.994353	0.003651	0.28	-0.28	0.28
5700	0	76	0.00%	98.70%	0.000000	2.713360	0.996670	0.002317	0.18	-0.18	0.18
5750	1	77	1.30%	100.00%	0.012987	2.893275	0.998094	0.001424	0.11	0.89	7.23

fc (kg/cm2) Alcanzada	fo Frecuencia	fo Frecuencia	fo Frecuencia	fo Frecuencia	fo/N F. Observada	z=(fc-u)/Des Var. Aleatoria	F=Dist.N(z) Distribution	Fx=Fi-Fi-1 Distribucion	Fe=Fx*N Frecuencia	fo - fe F. Observ.	x2= (fo-fe)2/fe
Intervalos	Ubservada	Acumulada	70	% Acum.	Nº de Datos	Normal Estan.	Normal Acm,	Normal	Esperada	r. Espera.	Chi-Cuadrad
100	4	4	1.40%	1.40%	0.014035	-2.049241	0.020219	0.020219	5.70	-1.70	0.54
100	4	10	0.70%	2.11%	0.007018	-1.920200	0.027102	0.000883	1.90	0.04	0.00
170	4	12	2.1170	4.217r	0.021055	-1.801170	0.033838	0.008730	2.40	0.90	4.95
180	6	20	7 11%	7 79 %	0.014035	-1.077133	0.040138	0.010920	3.83	217	0.20
185	5	22	1 75%	9.47%	0.021033	-1.303033	0.076493	0.010442	4.64	0.36	0.03
190	4	31	1.10%	10.88%	0.014035	-1.305028	0.010400	0.010230	5.54	-1.54	0.03
195	7	38	2.46%	13.33%	0.024561	-1.180992	0.118803	0.022861	6.52	0.48	0.40
200	4	42	1 40%	14 74%	0.014035	-1.056957	0.145266	0.026463	7.54	-3.54	1.66
205	8	50	2.81%	17.54%	0.028070	-0.932921	0.175430	0.030165	8.60	0.0.0-	0.04
210	10	60	3.51%	21.05%	0.035088	-0.808886	0.209290	0.033860	9.65	0.35	0.01
215	11	71	3.86%	24.91%	0.038596	-0.684850	0.246719	0.037429	10.67	0.33	0.01
220	12	83	4.21%	29.12%	0.042105	-0.560815	0.287462	0.040743	11.61	0.39	0.01
225	12	95	4.21%	33.33%	0.042105	-0.436779	0.331136	0.043674	12.45	-0.45	0.02
230	14	109	4.91%	38.25%	0.049123	-0.312744	0.377238	0.046102	13.14	0.86	0.06
235	22	131	7.72%	45.96%	0.077193	-0.188708	0.425161	0.047923	13.66	8.34	5.09
240	12	143	4.21%	50.18%	0.042105	-0.064673	0.474217	0.049057	13.98	-1.98	0.28
245	10	153	3.51%	53.68%	0.035088	0.059363	0.523668	0.049451	14.09	-4.09	1.19
250	11	164	3.86%	57.54%	0.038596	0.183399	0.572757	0.049089	13.99	-2.99	0.64
255	10	174	3.51%	61.05%	0.035088	0.307434	0.620743	0.047986	13.68	-3.68	0.99
260	17	191	5.96%	67.02%	0.059649	0.431470	0.666937	0.046193	13.17	3.83	1.12
265	13	204	4.56%	71.58%	0.045614	0.555505	0.710725	0.043789	12.48	0.52	0.02
270	11	215	3.86%	75.44%	0.038596	0.679541	0.751602	0.040877	11.65	-0.65	0.04
275	y	224	3.16%	78.60%	0.031579	0.803576	0.789179	0.037577	10.71	-1.71	0.27
280	10	234	3.51%	82.11%	0.035088	0.927612	0.823196	0.034016	9.69	0.31	0.01
285	7	241	2.46%	84.56%	0.024561	1.051647	0.853519	0.030324	8.64	-1.64	0.31
290	9	250	3.16%	87.72%	0.031579	1.175683	0.880139	0.026620	7.59	1.41	0.26
295	9	259	3.16%	90.88%	0.031579	1.299718	0.903151	0.023012	6.56	2.44	0.91
300	1	260	0.35%	91.23%	0.003509	1.423754	0.922741	0.019590	5.58	-4.58	3.76
305	7	267	2.46%	93.68%	0.024561	1.547789	0.939164	0.016422	4.68	2.32	1.15
310	4	271	1.40%	95.09%	0.014035	1.671825	0.952721	0.013557	3.86	0.14	0.00
315	3	274	1.05%	96.14%	0.010526	1.795861	0.963742	0.011021	3.14	-0.14	0.01
320	2	276	0.70%	96.84%	0.007018	1.919896	0.972564	0.008823	2.51	-0.51	0.11
325	2	278	0.70%	97.54%	0.007018	2.043932	0.979520	0.006955	1.98	0.02	0.00
330	3	281	1.05%	98.60%	0.010526	2.167967	0.984919	0.005400	1.54	1.46	1.39
335	2	283	0.70%	99.30%	0.007018	2.292003	0.989047	0.004128	1.18	0.82	0.58
340	0	283	0.00%	99.30%	0.000000	2.416038	0.992155	0.003108	0.89	-0.89	0.89
345	0	283	0.00%	99.30%	0.000000	2.540074	0.994459	0.002304	0.66	-0.66	0.66
350	2	285	0.70%	100.00%	0.007018	2.664109	0.996140	0.001682	0.48	1.52	4.82

Apéndice C. Análisis Estadistico de los Datos.

Apéndice D

Significancia Chi Cuadrado.

Se muestran los valores críticos de la distribución Chi-Cuadrado.
gdl/α	0,001	0,005	0,01	0,02	0,025	0,03	0,04	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	gdl/a
1	10,828	7,879	6.635	5.412	5,024	4.709	4,218	3,841	2,706	2,072	1.642	1,323	1,074	0.873	0,708	1
2	13,816	10.597	9.210	7,824	7,378	7.013	6,438	5,991	4.605	3,794	3.219	2,773	2,408	2.100	1,833	2
3	16,266	12,838	11,345	9,837	9,348	8,947	8,311	7,815	6,251	5,317	1.642	4,108	3,665	3.283	2,946	3
4	18,167	11.860	13,277	11.668	11,143	10,712	10.026	9.188	7,779	6,745	5.989	5,385	4.878	1,438	4,045	4
5	20.515	16.750	15,086	13.388	12,833	12,375	11.644	11,070	9,236	8,115	7.289	6,626	6.064	5,573	5,132	5
			,						·							
6	22,458	18,548	16.812	15,033	14.449	13,968	13,198	12,592	10.645	9.446	8.558	7.841	7.231	6.695	6.211	6
7	24,322	20.278	18,475	16.622	16.013	15,509	14.703	14.067	12.017	10.748	0.803	9.037	8,383	7.806	7.283	7
8	26,124	21,955	20.090	18,168	17.535	17.010	16.171	15.507	13,362	12.027	11.030	10.219	9.524	8,909	8.351	8
9	27.877	23,589	21.666	19.679	19.023	18,480	17.608	16,919	14.684	13,288	12.242	11.389	10.656	10.006	9.414	9
10	29.588	25,188	23,209	21.161	20,483	19,922	19.021	18,307	15.987	14,534	13,442	12,549	11.781	11.097	10.473	10
		,	,			,	• *				· ·		, -			
11	31.264	26.757	24,725	22.618	21,920	21.342	20.412	19,675	17.275	15,767	14.631	13,701	12,899	12.184	11,530	11
12	32,909	28,300	26.217	24.054	23,337	22.742	21.785	21,026	18.549	16.989	15.812	14.845	14.011	13.266	12,584	12
13	34,528	29.819	27,688	25.472	24,736	24,125	23,142	22,362	19.812	18,202	16,985	15,984	15,119	14.345	13,636	13
14	36,123	31,319	29.141	26.873	26.119	25,493	24,485	23,685	21.064	19,406	18,151	17.117	16.222	15,421	14,685	14
15	37,697	32,801	30,578	28,250	27,488	26,848	25.816	24,996	22,307	20,603	19.311	18,245	17.322	16.494	15,733	15
		- ,	,	,		,					,-		,	,		
16	39.252	34.267	32.000	29.633	28.845	28,191	27.136	26.296	23.542	21,793	20.465	19.369	18.418	17.565	16,780	16
17	40,790	35.718	33,409	30,995	30,191	29,523	28.445	27,587	24,769	22,977	21.615	20,489	19.511	18.633	17.824	17
18	42.312	37.156	34,805	32,346	31,526	30,845	29.745	28,869	25.989	24,155	22,760	21,605	20,601	19.699	18,868	18
19	43,820	38,582	36.191	33.687	32,852	32,158	31.037	30.144	27.204	25.329	23,900	22,718	21.689	20.764	19,910	19
20	45,315	39.997	37,566	35,020	34,170	33,462	32.321	31,410	28.412	26,498	25.038	23,828	22,775	21.826	20,951	20
	'		•			,	•			,			·		,	
21	46.797	41.401	38,032	36.343	35,479	34,759	33.507	32,671	29.615	27,662	26.171	24,935	23,858	22.888	21,991	21
22	48,268	42.796	40.289	37.659	36,781	36,049	34.867	33,924	30.813	28,822	27.301	26,039	24,039	23.947	23,031	22
23	49,728	44.181	41,638	38.968	38,076	37,332	36.131	35,172	32.007	29,979	28.429	27,141	26,018	25.006	24,069	23
24	51,179	45.559	42,980	40.270	39,364	38,609	37.389	36,415	33.196	31,132	29.553	28,241	27,096	26.063	25,106	24
25	52,620	46,928	44,314	41.566	40,646	39,880	38,642	37,652	34.382	32,282	30.675	29,339	28,172	27.118	26,143	25
				-												
26	54,052	48.290	45,642	42.856	41,923	41,146	39,839	38,885	35.563	33,429	31.795	30,435	29,246	28.173	27,179	26
27	55,476	49.645	46,963	44.140	43,195	42,407	41.132	40,113	36.741	34,574	32.912	31,528	30,319	29.227	28,214	27
28	56,892	50,993	48,278	45,419	44,461	43,662	42,370	41,337	37,916	35,715	34,027	32,620	31,391	30,279	29,249	28
29	58,301	52,336	49,588	46.693	45,722	44,913	43,604	42,557	30,087	36,854	35,139	33,711	32,461	31,331	30,283	29
30	59,703	53,672	50,892	47.962	46,979	46,160	44,834	43,773	40,256	37,990	36,250	34,800	33,530	32,382	31,316	30
31	61,098	55,003	52,191	49,226	48,232	47,402	46,059	44,985	41,422	39,124	37.359	35,887	34,598	33,431	32,349	31
32	62, 187	56.328	53,486	50,487	19,480	48.641	47,282	16,194	42,585	10,256	38, 166	36,973	35,665	31,480	33,381	32
33	63,870	57.648	54,776	51.743	50,725	49,876	48,500	17,400	43.745	11,386	39.572	38,058	36,731	35.529	34,413	33
34	65,247	58.964	56,061	52.995	51,966	51,107	49,716	48,602	44.903	42,514	40.676	39.141	37,795	36.576	35,444	34
35	66,619	60.275	57,342	54.244	53,203	52,335	50.928	49,802	46.059	43,640	41.778	40,223	38,859	37.623	36,475	35
]															
40	73,402	66,766	63,691	60.436	59,342	58,428	56,946	55,758	51,805	49,244	47,269	45,616	44,165	42.848	41,622	40
60	99,607	91,952	88,379	84.580	83,298	82,225	80,482	79,082	74,397	71,341	68,972	66,981	65,227	63.628	62,135	60
80	124,839	116,321	112,329	108,069	106.629	105,422	103,459	101,879	96,578	93,106	90.405	88,130	86,120	84,284	82,566	80
90	137,208	128,299	124,116	119,648	118,136	116,869	114.806	113,145	107,565	103,904	101,054	98,650	96,524	94,581	92,761	90
100	1 19,4 19	140,169	135,807	131,142	129,561	128,237	126,079	124,312	118.198	114,659	111,667	109,141	106,906	101,862	102,916	100
120	173,617	163.648	158,950	153,918	152,211	150,780	148.447	146,567	140.233	136,062	132,806	130,055	127,616	125.383	123,289	120
140	197,451	186.847	181,840	176,471	174.648	173,118	1/0.624	168,613	101.827	157,352	103,854	150,894	148,209	145.803	143,01/4	140
gdl/α	0,001	0,005	0.01	0.02	0,025	0,03	0,04	U,UD	0,10	1 0,15	0,20	1 0,20	1 0,30	0,30	1 0,40	gai/0

,

Tabla D.1: Valores Críticos de la Distribución Chi-Cuadrado. Fuente: Propia.

gdl/a	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	0,975	0,98	0,99	0,995	gdl/a
1	0.571	0,455	0,357	0.275	0,206	0,148	0,102	0,064	0.036	0,016	0.004	0,001	0,001	0.000	0,000	1
2	1.597	1,386	1,196	1.022	0,862	0.713	0,575	0,446	0.325	0,211	0.103	0,051	0,040	0.020	0,010	2
3	2.643	2,366	2,109	1.869	1,642	1.421	1,213	1,005	0.798	0,584	0.352	0,216	0.185	0.115	0,072	3
4	3.687	3,357	3,847	2.753	2,470	2.195	1,923	1,649	1.366	1,064	0.711	0,484	0,129	0,297	0,207	4
5	4.728	4.351	3,996	3.655	3,325	3.000	2,675	2,343	1.994	1,610	1.145	0,831	0,752	0.554	0,412	5
							'						,			
6	5.765	5,348	4.952	4.570	4,197	3.828	3,455	3,070	2,661	2,204	1.635	1,237	1,134	0,872	0,676	6
7	6.800	6,346	5,913	5.493	5,082	4.671	4,255	3.822	3.358	2,833	2,167	1,600	1,564	1,239	0,989	7
8	7.833	7.344	6.877	6.423	5,975	5.527	5,071	4,594	4.078	3,490	2.733	2,180	2,032	1.646	1,344	8
9	8.863	8.343	7.843	7.357	6.876	6.393	5,899	5.380	4.817	4.168	3.325	2,700	2,532	2.088	1,735	9
10	9.892	9.342	8,812	8.295	7,783	7.267	6,737	6.179	5.570	4,865	3.940	3,247	3,059	2.558	2,156	10
					,									•		
11	10.920	10.341	9.783	9.237	8.695	8.148	7,584	6,989	6.336	5,578	4.575	3,816	3,609	3.053	2,603	11
12	11.946	11.340	10.755	10.182	9.612	9.034	8,438	7.807	7.114	6,304	5.226	4,404	4,178	3.571	3,074	12
13	12,972	12.340	11,729	11.129	10,532	9.926	9,299	8.634	7,901	7,042	5.892	5,009	4.765	4.107	3,565	13
14	13,096	13,339	12,703	12.078	11,455	10,821	10.165	9.467	8,696	7,790	6.571	5,629	5,368	4,660	4,075	14
15	15.020	14.339	13.679	13.030	12,381	11,721	11.037	10,307	9,499	8,547	7.261	6,262	5.985	5,229	4,601	15
								-,	-,	-,		., .		•		
16	16.042	15.338	14,655	13.983	13,310	12,624	11.912	11,152	10.309	9,312	7.962	6,908	6.614	5,812	5,142	16
17	17.065	16.338	15.633	14.937	14.241	13.531	12,792	12.002	11.125	10.085	8.672	7,564	7.255	6,408	5,697	17
18	18,086	17.338	16.611	15.893	15,174	14.140	13.675	12.857	11.946	10.865	9.390	8,231	7,906	7.015	6.265	18
19	19 107	18 338	17.589	16 850	16.109	15,352	14.562	13.716	12.773	11.651	10.117	8.907	8.567	7.633	6.844	19
20	20 127	19.337	18,569	17,809	17.046	16.266	15.452	14.578	13.604	12.443	10.851	9,591	9.237	8,260	7,434	20
			2-1									,			,	
21	21.147	20.337	19.548	18,768	17.984	17.182	16.344	15.445	14.439	13.240	11.591	10.283	0.915	8,897	8.034	21
22	22,166	21.337	20.529	19.729	18,924	18,101	17.240	16.314	15.279	14.041	12.338	10.982	10.600	9.542	8,643	22
23	23,185	22.337	21.510	20.690	19.866	19.021	18.137	17.187	16.122	14,848	13.091	11,689	11,293	10.196	9,260	23
24	24,204	23,337	22,491	21,652	20.808	19,943	19.037	18.062	16.969	15,659	13.848	12,401	11,992	10.856	9.886	24
25	25,222	24,337	23,472	22.616	21.752	20,867	19.939	18,940	17.818	16.473	14.611	13,120	12,697	11.524	10,520	25
26	26.240	25.336	24.454	23.579	22.697	21,792	20.843	19,820	18.671	17,292	15.379	13,844	13,409	12.198	11,160	26
27	27.257	26.336	25,437	24.544	23,644	22,719	21.749	20,703	19.527	18,114	16.151	14,573	14,125	12.879	11,808	27
28	28.274	27,336	26.419	25,500	24,591	23,647	22.657	21.588	20.386	18,939	16.928	15,308	14,847	13.565	12,461	28
29	29,291	28.336	27,402	26.475	25.539	24,577	23,567	22,475	21.247	19,768	17.708	16.047	15,574	14.256	13,121	29
30	30,307	29.336	28,386	27.442	26,488	25,508	24.478	23.364	22.110	20,599	18,493	16,791	16.306	14.953	13,787	30
	00,007		,				,		,	,	,				'	
31	31,323	30.336	29.369	28.409	27,438	26,440	25.390	24,255	22.976	21,434	19.281	17,539	17,042	15,655	14,458	31
32	32.339	31,336	30.353	29.376	28,389	27,373	26.304	25,148	23.811	22,271	20.072	18,291	17,783	16,362	15,134	32
33	33,355	32, 336	31.337	30.341	29.340	28,397	27.219	26.042	21.711	23,110	20.867	19,047	18,527	17.071	15,815	33
34	34.371	33.336	32.322	31.313	30,293	29.242	28.136	26,938	25.586	23,952	21.664	19,800	19,275	17.789	16,501	34
35	35,386	34,336	33,306	32,282	31,246	30,178	29.054	27,836	26.460	24,797	22.465	20,569	20,027	18,509	17,192	35
										•						
40	40,459	39.335	38,233	37.134	36,021	34,872	33,660	32,345	30,856	29,051	26,500	24,433	23,838	22,164	20,707	40
60	60,713	59.335	57,978	56.620	55,239	53,809	52,294	50,641	48,759	46,459	43,188	40,482	39,699	37,485	35,534	60
80	80,927	79.334	77,763	76.188	74.583	72,915	71.145	69,207	66,994	64,278	60,391	57,153	56,213	53,540	51,172	80
90	91,023	89.334	87,66G	85.993	84,285	82,511	80.625	78,558	76,195	73,291	69,126	65,647	64,635	61,754	59,196	90
100	101,115	99.334	97,574	95.808	91,005	92,129	90,133	87,945	85.441	82,358	77,929	74,222	73,142	70.065	67,328	100
120	121,285	119.334	117,404	115,465	113,483	111,419	109.220	106,806	104.037	100,624	95.705	91,573	96,367	86,923	83,852	120
140	141,441	139.334	137,248	135,149	133.003	130,766	128.380	125,758	122.748	119,029	113,659	109,137	107,815	104.034	100,655	140
gdl/a	0,45	0,50	0,55	0,60	0,65	0,70	0,75	0,80	0,85	0,90	0,95	0,975	0,98	0,99	0,995	gdl/a

Tabla D.2: Valores Críticos de la Distribución Chi-Cuadrado. Fuente: Propia.

Apéndice E

Parámetros del Análisis de Confiabilidad.

Se presentan los cálculos previos que se realizaron a las funciones de falla en flexión, corte, deflexión y distorsión, en la determinación de los indices de confiabilidad β correspondientes:

PARAMETROS DEL A	ANALISIS DE	CONFIABILIDAD	EN CORTE	· COMB 01
------------------	-------------	---------------	----------	-----------

1 Analisis para una sobrecarga unitaria

Param	etro	Wu (ton/m)	d (m)	bw (m)	f'c (kg/cm2)	fy (kg/cm2)
\\	/alor	1	0.17	0.1	210	4200
Vu- (t	on)≐	-2.955	ton.m			
Vu+ (t	on)=	1.705	ton.m	1		

2 Parametros de diseño

Parametro	CM (kg/m)	CV (kg/m)	d (m)	bw (m)	f'c (kg/cm2)	fy (kg/cm2)
Valor	120	96	0.17	0.1	210	4200

Combinacion	αD=1.4 ; αL=1.7	aD=1.3 ; aL=1.7	aD=1.3 ; aL=1.6	aD=1.2 ; aL=1.6
Wu (kg/m)=	331.2	319.2	309.6	297.6
Vu- (ton)=	0.979	0.943	0.915	0.879
Vu+ (ton)=	0.565	0.544	0.528	0.507

3 Valor de w, para distintas combinaciones de carga

Vu- (ton)	Valor de d*bw (cm2), para distintas combinaciones de carga							
ø	αD=1.4 ; αL=1.7	αD=1.3;αL=1.7	αD=1.3 ; αL=1.6	aD=1.2; aL=1.6				
1.00	127.4272	122.8103	119.1168	114.4998				
0.95	134.1339	129.2740	125.3861	120.5262				
0.90	141.5858	136.4559	132.3520	127.2220				
0.85	149.9144	144.4827	140.1374	134.7057				
0.80	159.2841	153.5129	148.8960	143.1248				

Tabla E.1: Parámetros del Análisis de Confiabilidad en Corte - Comb. 01. Fuente: Propia

Apéndice E. Parámetros del Análisis de Confiabilidad.

PARAMETROS DEL ANALISIS DE CONFIABILIDAD EN FLEXION - COMB 01

1 Analisis para una sobrecarga unitaria

(ing) critici
4200
•

2 Parametros de diseño

Mu- (ton.m)=

Parametro CM (kg/m)	CV (kg/m)	d (m)	b (m)	f'c (kg/cm2)	fy (kg/cm2)
Valor 120	96	0.17	0.40	210	4200

Combinacion	αD=1.4 ; αL=1.7	aD=1.3 ; aL=1.7	aD=1.3 ; aL=1.6	aD=1.2 ; aL=1.6
Wu (kg/m)=	331.2	319.2	309.6	297.6
Mu+ (ton.m)=	0.582	0.561	0.544	0.523
Mu- (ton.m)=	1.035	0.998	0.968	0.930

3 Valor de w, para distintas combinaciones de carga

3.125

ton.m

Mu+ (ton.m)	Valor	Valor de w+, para distintas combinaciones de					
ø	αD=1.4 ; αL=1.7	aD=1.3 ; aL=1.7	αD=1.3 ; αL=1.6	αD=1.2 ; αL=1.6			
1.00	1.670583948	1.680965091	1.681472262	1.682001268			
0.90	1.667835925	1.680941913	1.681472075	1.682001267			
0.80	1.664387898	1.680912722	1.681471839	1.682001265			
0.70	1.659933218	1.680874828	1.681471534	1.682001263			
0.60	1.653955372	1.680823653	1.681471121	1.682001259			
Mu+ (ton.m)	Valor	de w-, para distinta	s combinaciones de	carga			
Ø	αD=1.4 ; αL=1.7	aD=1.3 ; aL=1.7	aD=1.3 ; aL=1.6	aD=1.2 ; aL=1.6			
1.00	0.024331307	0.023437194	0.022722601	0.021830231			
0.90	0.027079329	0.026082607	0.025286099	0.024291548			
0.80	0.030527357	0.029401403	0.028501755	0.027378582			
0.70	0.034982036	0.033688315	0.032654817	0.031364785			
0.60	0.040959882	0.039439576	0.038225387	0.036710209			

4 Cuantia de acero p, para distintas combinaciones de carga

Mu+ (ton.m)	Cuantia de acero p, para distintas combinaciones de carga							
ø	aD=1.4 ; aL=1.7	aD=1.3 ; aL=1.7	aD=1.3 ; al=1.6	aD=1.2 ; aL=1.6				
1.00	0.001216565	0.001171860	0.001136130	0.001091512				
0.90	0.001353966	0.001304130	0.001264305	0.001214577				
0.80	0.001526368	0.001470070	0.001425088	0.001368929				
0.70	0.001749102	0.001684416	0.001632741	0.001568239				
0.60	0.002047994	0.001971979	0.001911269	0.001835510				

5 Area acero, para distintas combinaciones de carga

.

Mu+ (tan.m)	Area de a	Area de acero (cm2), para dístintas combinaciones de carga					
Ø	aD=1.4 ; aL=1.7	aD=1.3 ; aL=1.7	αD=1.3 ; αL=1.6	aD=1.2 ; aL=1.6			
1.00	0.827264426	0.796864587	0.772568446	0.742227840			
0.90	0.920597194	0.886808630	0.859727360	0.825912621			
0.80	1.037930125	0.999647702	0.969059659	0.930871794			
0.70	1.189389218	1.145402700	1.110263771	1.066402687			
0.60	1.392635994	1.340945579	1.299663166	1.248147092			

Tabla E.2: Parámetros del Análisis de Confiabilidad en Flexion - Comb. 01. Fuente: Propia

Apéndice E. Parámetros del Análisis de Confiabilidad.

PARAMETROS DEL ANALISIS DE CONFIABILIDAD EN DISTORSIONES - COMB 01

1 Parametros de diseño

Parametro	CM (kg/m) - D	CV (kg/m) - L	d (m)	bw (m)	fc (kg/cm2)	fy (kg/cm2)
Valor	120	96	0.17	0.1	210	4200
Parametro	lg (cm4)	Mcr	Ma - (L+D)	Ma - (D)	(Mcr/Ma)3 - (L+D)	(Mcr/Ma)3 - (D)
Valor	11800.595	25882.121	33075	18375	0.47918	2.79459

2 Valor de w, para distintas combinaciones de carga

αD=1.4 ; αL=1.7	aD=1.3 ; aL=1.7	αD=1.3 ; αL=1.6	aD=1.2 ; aL=1.6
50715	48877.5	47407.5	45570
25725	23887.5	23887.5	22050
Valor	de w+, para distinta	s combinaciones de	carga
αD=1.4 ; αL=1.7	aD=1.3 ; al=1.7	aD=1.3 ; aL=1.6	aD=1.2 ; aL=1.6
1.651411069	1.654596277	1.654596277	1.657768965
1.646431061	1.649991363	1.649991363	1.653535939
1.640162057	1.644197793	1.644197793	1.648213190
1.632028308	1.636686429	1.636686429	1.641317218
1.621050289	1.626558635	1.626558635	1.632028308
Valor	de w-, para distinta	s combinaciones de	carga
αD=1.4 ; αL=1.7	aD=1.3; aL=1.7	aD=1.3 ; aL=1.6	aD=1.2 ; aL=1.6
0.088148396	0.040318977	0.040318977	0.037146290
0.098582868	0.044923892	0.044923892	0.041379315
0.111834063	0.050717461	0.050717461	0.046702064
0.129230465	0.058228825	0.058228825	0.053598036
0.153103327	0.068356620	0.068356620	0.062886946
	αD=1.4; αL=1.7 S0715 25725 Valor αD=1.4; αL=1.7 1.651411069 1.646431061 1.640162057 1.632028308 1.621050289 Valor αD=1.4; αL=1.7 0.088148396 0.01834063 0.129230465 0.153103327	$\begin{array}{c} \alpha D=1.4\;;\; \alpha L=1.7 & \alpha D=1.3\;;\; \alpha L=1.7 \\ 50715 & 48877.5 \\ 25725 & 23887.5 \\ \hline Valor de w+, para distinta \\ \alpha D=1.4\;;\; \alpha L=1.7 & \alpha D=1.3\;;\; \alpha L=1.7 \\ 1.651411069 & 1.654596277 \\ 1.646431061 & 1.649991363 \\ 1.640162057 & 1.644197793 \\ 1.632028308 & 1.636686429 \\ 1.621050289 & 1.626558635 \\ \hline Valor de w-, para distinta \\ \alpha D=1.4\;;\; \alpha L=1.7 & \alpha D=1.3\;;\; \alpha L=1.7 \\ 0.088148396 & 0.040318977 \\ 0.098582868 & 0.044923892 \\ 0.111834063 & 0.050717461 \\ 0.129230465 & 0.058228825 \\ \hline 0.153103327 & 0.068356620 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

4 Cuantia de acero p, para distintas combinaciones de carga

Mu+ (ton.m)	Cuantia de acero p, para distintas combinaciones de carga					
ø	αD=1.4 ; αL=1.7	aD=1.3; aL=1.7	aD=1.3; aL=1.6	aD=1.2; aL=1.6		
1.00	0.004407420	0.002015949	0.002015949	0.001857314		
0.90	0.004929143	0.002246195	0.002246195	0.002068966		
0.80	0.005591703	0.002535873	0.002535873	0.002335103		
0,70	0.006461523	0.002911441	0.002911441	0.002679902		
0.60	0.007655166	0.003417831	0.003417831	0.003144347		

5 Area acero, para distintas combinaciones de carga

•

Mu+ (ton.m)	Area de acero (cm2), para distintas combinaciones de carga					
ø	αD=1.4 ; αL=1.7	aD=1.3; aL=1.7	αD=1.3 ; αL=1.6	aD=1.2; aL=1.6		
1.00	0.749261369	0.342711308	0.342711308	0.315743461		
0.90	0.837954374	0.381853079	0.381853079	0.351724177		
0.80	0.950589539	0.431098418	0.431098418	0.396967542		
0.70	1.098458956	0.494945016	0.494945016	0.455583309		
0.60	1.301378283	0.581031266	0.581031266	0.534539044		

2 Calculo de las inercias efectivas para los dos estados de carga (L+D) y (D)

	aD=1.4; al=1.7							
ø	ρ	c (cm)	1 cr (cm4)	le (cm4) - (L+D)	le (cm4) - (D)			
1.00	0.004407420	2.21549212	1455.192207	6412.517863	11800.59524			
0.90	0.004929143	2.44010546	1614.822697	6495.656377	11800.59524			
0.80	0.005591703	2.71570103	1818.720516	6601.850135	11800.59524			
0.70	0.006461523	3.06205262	2089.953328	6743.113203	11800.59524			
0.60	0.007655166	3.51088759	2471.368493	6941.761281	11800.59524			
		aD=1.3	; al=1.7					
ø	ρ	c (cm)	i cr (cm4)	le (cm4) - (L+D)	le (cm4) - (D)			
1.00	0.002015949	1.09047483	711.2471019	6025.057483	11800.59524			
0.90	0.002246195	1.20618349	785.4076372	6063.681663	11800.59524			
0.80	0.002535873	1.34939059	877.5119967	6111.651318	11800.59524			
0.70	0.002911441	1.53123739	995.3242262	6173.010108	11800.59524			
0.60	0.003417831	1.76983985	1152.114144	6254.669199	11800.59524			
		αD≈1.3	; al=1.6					
ø	р	c (cm)	1 cr (cm4)	le (cm4) - (L+D)	le (cm4) - (D)			
1.00	0.002015949	1.09047483	711.2471019	6025.057483	11800.59524			
0.90	0.002246195	1.20618349	785.4076372	6063.681663	11800.59524			
0.80	0.002535873	1.34939059	877.5119967	6111.651318	11800.59524			
0.70	0.002911441	1.53123739	995.3242262	6173.010108	11800.59524			
0.60	0.003417831	1.76983985	1152.114144	6254.669199	11800.59524			
1	αD=1.2; αL=1.6							
ø	ρ	c (cm)	l cr (cm4)	le (cm4) - (L+D)	le (cm4) - (D)			
1.00	0.001857314	1.00976258	659.5813981	5998.149029	11800.59524			
0.90	0.002068966	1.11726816	728.4064562	6033.994393	11800.59524			
0.80	0.002335103	1.25041482	813.8081918	6078.473197	11800.59524			
0.70	0.002679902	1.41963120	922.8825389	6135.281136	11800.59524			
0.60	0.003144347	1.64190074	1067.676294	6210.692404	11800.59524			

Tabla E.3: Parámetros del Análisis de Confiabilidad en Deflexión - Comb. 01. Fuente: Propia

Apéndice E. Parámetros del Análisis de Confiabilidad.

PARAMETROS DEL ANALISIS DE CONFIABILIDAD EN DISTROSION - COMB 03

1 Parametros de diseño

Parametro	CM (kg/m2)	CV (kg/m2)	hn (m)	L (m)	f'c (kg/cm2)	fy (kg/cm2)
Valor	300	240	3.50	4.00	210	4200
Parametro /	Ancho trubitario (m)	CM (kg/m)	CV (kg/m)	Categoria U	Factor C	Factor R
Valor	5.00	1500.00	1200.00	1 50	36	0

2 Sobrecarga de diseño gravitatorias (D+L) para las diversas combinaciones

	Sobercarga	Distintas combinaciones de carga					
	Wu	D=1.25 ; αL=1.25 ;	αS=D=1.25 ; αL=1.15 ; αS=	αD=1.2 ; αL=1.1 ; αS=1	αD=1.2;αL=1;αS=1		
	wD (tn/m)	1.875	1.875	1.800	1.800		
	wL (tn/m)	1.500	1.380	1.320	1.200		
_	Wu (tn/m)	3.375	3.255	3.120	3.000		

3 Fuerza sismica para diversas zonas sismicas (2) y parametros de sitio (S)

Factor de Zona	Fuerza sismica F (tn) para distintos factores de zona y sitio				
Z	SO	51	\$2	\$3	
0.45	1.418	1.772	1.860	1.949	
0.35	1.103	1.378	1.585	1.654	
0.25	0.788	0.984	1.181	1.378	
0.10	0.315	0 394	0.630	0.788	

4 Fuerza axial en las columnas del portico de analisis, para las combinaciones de las cargas gravitatorias y de sismo

Factor de Zona	Fuerza axial (tn) en las columnas, para distintas combinaciones de carga					
Z	D=1.25 ; aL=1.25 ; aS=	D=1.25 ; αL=1.15 ; αS=	αD=1.2 ; αι=1.1 ; αS=1	αD=1.2 ; αL=1 ; αS=1		
0.45	7.370	7.285	7.054	6.853		
0.35	7.232	7.113	6.933	6.724		
0.25	7.095	5.941	6.757	6.603		
0.10	6.888	6.682	6.516	6.345		

5 Inercia necesaria para las columnas del portico de analisis, para las combinaciones de las cargas gravitatorias y de sismo

Factor de Zona	inercia (cm4) en las columnas, para distintas combinaciones de carga					
Z	iD=1.25 ; αL=1.25 ; αS=	D=1.25 ; aL=1.15 ; aS=	αD=1.2 ; αL=1.1 ; αS=1	aD=1.2 ; aL=1 ; aS=1		
0.45	453.022	442.638	414.984	391.644		
0.35	436.239	421.952	400.917	377.015		
0.25	419.772	401.761	380.757	363.613		
0.10	395.666	372.403	354.061	335.711		

6 Inercia necesaria para las columnas del portico de analisis, para cumplir con la distorsion limite 0.007hn

Factor de Zona	Inercia (cm4) en las columnas, para distintas combinaciones de carga					
2	D=1.25 ; αL=1.25 ; αS=	D=1.25 ; al=1.15 ; aS=	αD=1.2 ; αL=1.1 ; αS=1	αD=1.2 ; αL=1 ; αS=1		
0.45	4754.983	5943.729	6240.915	6538.102		
0.35	3698.320	4622.900	5316.335	5547.480		
0.25	2641.657	3302.072	3962.486	4622.900		
0.10	1056.663	1320.829	2113.326	2641.657		

6 Inercia necesaria para las columnas del portico de analisis, para cumplir con la distorsion limite 0.007hn

Factor de Zona	Valores de 2S			
Z	SO	S1	S2	\$3
0.45	0.360	0.450	0.473	0.495
0.35	0.280	0.350	0.403	0.420
0.25	0.200	0.250	0.300	0.350
0.10	0.080	0.100	0.160	0.200

Factor de Zona	Valores de ZS/I, para distintas combinaciones de carga				
2	D=1.25 ; aL=1.25 ; aS=	D=1.25 ; ai=1.15 ; aS=	aD=1.2 ; aL=1.1 ; aS=1	αD=1.2 ; αL=1 ; αS=1	
0.45	0.00006912435	0.00007046260	0.00007098965	0.00007143119	
D.35	0.00005772185	0.00005937765	0.00007040095	0.00007089211	
0.25	0.00006532896	0.00006749764	0.00006907281	0.00007018932	
0.10	0.00005508394	0.00005905865	0.00006484593	0.00006717342	

Tabla E.4: Parámetros del Análisis de Confiabilidad en Distorsión - Comb. 03. Fuente: Propia

Apéndice F

Programas en MatLab.

Se muestran el ingreso de datos y los resultados obtenidos del programa elaborado para la obtención del indice de confiabilidad.

in na sa	n fan de skriet fan de skri	an a share an
ANGLISIS DE CONTIABILIDE	T EN FIRITOR	
"ARALISIS FORM / SCRM FARA UNA VI BACH. ING. NEW JUNIOR CAR	GUSTA T DEL ALIGERADO"	
CONSTIN OF ACTRO C 710.001353966		
Cisntiams=0.00135397 (Contin)		
persiremax=0.17 [metros]		
LimitSteteFunction =		
\$ (x) crantiene*x (4) * (1-0.59*cua	stianx*x(1!/x(3))*basemx*(pstaltemax*2)-1.76*1	x{1}+x(7))
Valor Medac=0.12000 [tor./m]		
Valor Medic=2426.10000 (ton/m) Valor Medic=2426.10000 (ton/m)		
Valor Media=19459.30000 (cor/m) Desviscion Estandar=0.00960 (ton/s	k]	
Desviacion Estandar=0.01728 [ton/s Desviacion Estandar=403.10009 [ton	x) h/#;	
Desviecion Estandar=2379.19000 (to	pa/n)	
ana =		
[lst0 char] [lst02 char]		
PrehabilityCfFailure_FORM =		
5.3920682796742150-007		
HL_REITERSTTYINDER *		
	un varige finanza represión en amina ritera varialitikativa en el seguntera	er genetet felse i de gulisister part an 194 and 4
ProbabilityCffeilure_FORH -		
3.592065279674215e-007		
ML ReligbilityIndex -		
4.967100519011165		
Alta_Z -		
Columna 1 through 5		
0.137503642445466 0.9289390825	36119 -0.011267040751662	
Column 4		
-6.343154295132999		
DesignFoint_2 -		
Columns 1 through 3		
0.603513430988479 4.6135731687	30477 -0.070504 <i>6</i> 70*43922	
Column 4		
-1.707284228803755		
DesignPoint_X -		
1.30+004 *		
Columns 1 through 2		
6.000013456172394 0.0000265165	04065 0.239755565722313	
ProbabilityOfFailure SORM -	n na na anticipanta na manana na manana manana ang ang ang ang ang ang ang ang an	na tha a suite an ann an
\$-79778300"886649x-007		
SGRM_ReliabilityIndex =		
1.948421561374615		
11/2 7 4		
Columna 1 shyandt 1		
G.157503801457650 0 6260000	152448 -0.1114267081242210	
Column 4		
-v.3:3:2:11001139#		
GradientVestar -		
Columns 1 through 3		
-7 016845800000000000000000000000000000000000	\$\$784 A ANY "ESACADE 7050	
-0.010503469095103 -0.1141431911	0.001.0001.000	
Column +		
Column #		
Column + 0.042201545055225		
-0.126559999999 Column # D.092201945055229 Repolectivetty =		
Columne 1 through 3		
Columes 1 through 5 Columes 1 through 5 Columes 2 through 5	53736 0	

Figura F.1: Cálculo del Indice de Confiabilidad para $\alpha_D = 1.4$, $\alpha_L = 1.7$ y $\varphi = 0.9$, con una cuantía requerida de 0,001353966. Fuente: Propia.

ANALISIS				
	DE CONFINSTLIDAD EN CORTE			
JACE. ING.	NOT FARA USA VIGUETA Y DEL A MAR JUNIOR CARDENAS ALABOON	LIGERADC		
brd (Centimetros'2)	7:147.9144			
IdeitStateFunction a				
f(s)0.55 mothering	(01*x (3) *0.5+2.92* (x /2) +x (2)			
Valor Hedio=0.12002	iten/s]			
Valor Hedio+0.09631 Valor Hedio=2426.30	(tcn/s) 000 (tct/s)			
Desviecion Estandar Desviacion Estandar	=0.00980 [ton/#]			
Desvisción Estación	-\$03.10000 [tcs/a]			
an# =				
(1250 char) [1297 char]				
FrebabilityOfFailure	TONE -			
2.65392776374636	78-505			
SL_ReliabilityIndex	-			
1.519476302160113				
alfa Z e				
		dell'anno con constanto		
ProbabilityOffeilure	FORM -	and a could a series		
2.6255\$776374636	7e-006			
F. Belishilirvinder	-			
1.512178002160510				
Alfa_2 -				
0.127459918233918	0.411488130143628 -0.920	624091913669		
DesignPoint_2 -				
0.609301553348515	1.0000300000035117 -4.090	450423248180		
DesignFoint_K -				
() 00125570FB69133	0.001360104045186 2.272			
GradientVector *				
-0.020031999999022	-0.091377587667665 C.196	073350754307		
ens -				
(1200 cher)				
[1x92 Char]				
	SORM -			
ProbabilityOfFailure				
PronabilityOfFailure	a a ta	and the second se	an a	
ProbabilityOfFeilere	et a linnen wer og av en blev germanssallingen som v	and a set of the set of	an a	an a
ProbabilityOfFallare	28 1 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4			an a
ProbabilityOfFeilure DiedientVester - -0.028031999999012	-0.091377887667862 0.190	073350721502		
Probability/offeilure	-0.091177887667665 0.195	073350721502	na n	
Promeb.11:070fFailure 	-0.091377887667662 0.193	073450781502	ennen en formen en f	
Promen LityOffeline Contraction	-0.091377887667662 0.193	073350721502	ennen frankrigen en der eine der	
Promen LityOffeline Contention of the second of the secon	-0.091377887667662 0.199	078350784502		
Promen 14 (yoffeiling 	-0.091377827647662 0.194 5064 -	073350781502		
PromeblicyOfFaller -C.032031999999012 ans - {lat0 cbsr} [lat0 cbsr] ProbebileyOfFaller 5.60709551773041 50%5_BellecileyToff	-0.091377827647662 0.194 5064 - 12-006	073350724502		
Promeb.14:906Fa.1376 -0.032031099993032 ans - {lat0.cbsr} [lat0.cbsr] Probebiley0fFa1urc 5.00709551773062 5084_Bellesciley75dc 4.322300714784566	-0.091377887667662 0.192 5064 - 1-0-09	078350781802		
Promeb.11:y0fFalinr -0.026031099999012 ans - {inf0 cbsr; [inf0 cbsr; [inf0 cbsr; [inf0 cbsr; [inf0 cbsr; [inf0 cbsr;] SchorpsSit77308: SCHE_Baliae:licy7cde: 4.32230714783456	-0.091377887667662 0.192 5064 - 1-0-08	073350724502		
PromebilityOffeilter 	-0.091377887667662 0.190 50634 - 1	073350724502		
PromebilityOffeilter 	-0.091377887667865 0.195 -0.091377887667865 0.195 -0.091377887667865 0.195 -0.091 -0.0	621574533610		
PromebilityOffeilare -0.0203199599032 ans - [inf0 char] [inf0 char] [inf0 char] FrobebileyOffeilure 5.5079551775041 5086 EmilebileyTrde 4.33233071478456 D.127455222199595 GradientVactor -	-0.091377887667865 0.191 -0.091377887667865 0.191 50634 - 1e-008 1 -	621574535010		
PromebilityOffeilare -0.026031999999032 ans - (1x00 char) (1x00 char) (1x00 char) (1x00 char) (1x00 char) SORU[Sallar00ffeilare -0.02709551773041 SORU[Sallar:1076741 -0.027032000204543	-0.091377857667865 0.195 _0.091377857667865 0.195 _506X4 - k=-006 0.115487080376001 -0.930 -0.09137727420176 0.195	073350784502 624574533800 0736079653741		
PromebilityOffeilare 	-0.091377857667865 0.195 _0.091377857667865 0.195 _50KK - 2a-058 t = _0.415487080376004 -0.950 _0.091597727420176 0.195	6215745550 6215745550 6215745550 075607965745		
Promeb.14:90fFailtre 	-0.091377857667865 0.195 _0.091377857667865 0.195 _506X - 20-094 -0.415467080376004 -0.900 -0.091377727419176 0.194 -0.091377727419176 0.194	62157455520 62157455520 075607565741		

Figura F.2: Cálculo del Indice de Confiabilidad para $\alpha_D = 1.4$, $\alpha_L = 1.7$ y $\varphi = 0.85$, con un valor de $d * b_w$ de 149.9144. Fuente: Propia.

ANALISIS DE CONFERENCIASO EN DEFLEXION	
BACH, NG, WAX CHICK CARDONS ALLOCON	
TREACT FRECTERS (D-L)	
le(D+2) {ccc^4} 7:8093.638317 lefectdlxx02-0.00006496 {metrox^4}	
Lregramer-3.7000 [metres] furnesr-3.0000 [metres]	:
crantianx=0.00001 [Cuantla] ieferudmu=0.00011203 [metros ⁺ 4]	
limitStatefunovicn =	
<pre>\$(x) (lxvgrnexs/180)-({(5*lxvgxx*1)/(48*3*15000*x(3)*0.5)}*({(ftrnexs//(1+50*cuentia))</pre>	=x})*;{{3*x{1;}/{5*10
Valor Medic=0.12000 (tom/m) Valor Medic=0.0000 (com/m)	
Valor Medio=2426.1000 [con/m] Desuistics Zetardare0.000(con/m)	
Desviacion Estender#0.01728 [ton/m] Desviacion Estander#03.10000 [ton/m]	
613 -	
(1x20 Char)	
(1x92 cher)	
FromeDilityOfFailure_FORK ~	
1.5109570957052692=-004	
ar destatus tratader at an a summer and a sum and a	
FrobabilityOffellure_FORM +	
1.3:5357850952692e-004	
8L_RelaxbilityTodex *	
3.648601805162945	
Alfs_2 +	
0.200887965232945 0.522483793355272 ~0.52467895332936°	
DesignFoint Z +	1
0.732161947071477 1.914912692343660 -3.013162321395475	1
DesignPoint X -	ľ
1.009127022754482 0.003136528063855 1.209476125958484	
GradientVector =	
~D.300312537257226 -3.303222983256033 D.301204546336450	
418 T	
(1xf0 char) (1x92 char)	
S FrobebilityOffeilure SORK +	·
สาขาง การการการการการการการการการการการการการก	
-0.000012837857226 -0.000022983026685 0.001284586556450	-
en.5 -	
(1x80 cher)	
(2x85 dbar) (2x85 dbar)	
(195 chas) (195 chas) FrolahilisyOffellure_5004 -	
(1950 char) [1950 char] ProlahilikyOffeiliure_50004 - 2.32c*72284125943e-004	
(1950 char) [1950 char] FrombhilsvyOffElliure_50004 = 2.31c*71284113943e-004 80004_BellebilsvyTostem =	
(1950 char) [1950 char] ProlahilaryOffallure_50004 = 2.32C*71284139491e-004 80004_BellabilaryTistes = 3.501783926147244	
(1xf0 cbar) [1950 char] ProlahilaryOffallure_50004 = 2.32C*71284139491e-004 80004_BellabiloyTindex = 3.501783926147244	
(1950 char) [1950 char) ProbabilizyOffalling 500% - 2.52(**7284159451e-004 800%_SeliabilizyTides - 3.50(*73524159451e-004 800%_SeliabilizyTides - 3.50(*73524159451e-004) 800%_SeliabilizyTides - 0.52945773521596 0.529462282755*75 -0.6245*9542611716	
(1950 char) [1950 char] ProlahilizyOffallize_500% = 2.52C*71284159491e-004 800%_BellabilizyIndex = 3.501783926147244 Alfa_Z = 0.2004897735216905 0.523462282758775 -0.624819462631716	1
(1950 char) [1950 char] Probability/Offiliume_50004 = 2.500712841594910-004 80004_Beliebility/Index = 3.501783926147244 Alfe_Z = 0.2004977352145004 0.523462282736775 -0.624810462631716 Gradient/Geoder =	-
(1950 char) [1950 char) FrombalizyOffElling 500% - 2.52C*72584159451e-004 800%_Beliebality/Index - 3.501783526147244 Alfe_Z - 0.2004877353165006 0.525462282738*775 -0.6248*10462611716 Gfadiemt/BebCor = -0.003525557557530 -0.000522892445522 0.001288549767320	
(1950 char) [1950 char) FrombalizyOffeliume_500% - 2.52C*7258415945e-004 800%_BeliebalizyTindes - 3.501783526147244 Alfe_Z - 0.200497735216906 0.525462282738775 -0.624819462611716 GradiemuTeotor - -0.00352557257530 -0.000522892445522 0.0012845497673822 Reselutiontra -	
(1950 char) [1950 char) ProbabilizyDffallure_500% - 2.52C*71284159491e-004 800%_SeliabilityTimes - 3.501785926147244 Midq_Z - 0.202697725316306 0.523462282758775 -0.624819462611716 GradiemtVector - -0.00381545763750 -0.005522923445520 0.001284549767820 ReseliabilityE - 1.0e=063 -	
(1950 char) [1950 char) FrombalizyOffeliume_500% - 2.52271284159491e-004 800%_BeliabilityTides - 3.501783926147244 Alfe_Z - 0.200497735216906 0.523462282758775 -0.624819462631716 Gradiemuteotor - -0.00351557587530 -0.000592982445920 0.001284549767380 Reselutiontre - 1.0e-009 - 0.000560718571859 0.05009555815955 0.05105735857814 3.000056051855956 -0.82200682284787 0.051051735857814	

Figura F.3: Cálculo del Indice de Confiabilidad para $\alpha_D = 1.4$, $\alpha_L = 1.7$ y $\varphi = 0.90$, con un valor de Ie(L+D) de 6495.66. Fuente: Propia.

AMALISIS DE PANALISIS FORM				
	CONFINELLOND EN DIS	3108,5100		
EACH. THG.	HAX JUNTOR CARDENAS I	NLAROCH		
FACTOR DE IMERCIA				
25/Ir [1/cm^4] 2:0. Anergregza01+6512.4	.00006912435 9500000 [l/metros*1]			, fe
factoring=1.55000 ((metros) (982-5630)			:
factor max=2.50000 (RRE-E030]			
LigitStateFunction =	í.			<u>.</u>
\$(x) (0.007*aitpo	irtma) -inercreque01* (i	factorum# factorum#/f	actorrax) * ix {1} + x (Z) / 2} * ((alcpor	ama^3)/(24+1500
Valor Medic=0.30000 Valor Medic=0.21200	(ton/m)			
Valor Medio+7426.10 Desviscion Estandar	1983 (tat/#) =6.02438 (con/#)			
Desviacion Estandar Desviscion Estandar	=2.04520 [ton/m] =433.10000 [ton/m]			
475 *				
{1x00 char] {1x97 char}				
ProbabilityOfFailure	- FORM -			
0.013485567575913	-			
RL ReliabilityIndex				
				-
ProbatilityCfFailure	тсри -		en felte al fill al de serie en fertier et a des dan la de sere	* 5 * 3
0.013495567575913				
RL_ReliebilityIndex	-			
2.211645955757353				
Alfa_2 -				
0.365613958206437	0.414545430518777	-0.838458546882505		i.
DesignPoint_2 =				•
0.202270121695695	0.919465292632540	-1.541262021231947		
DesignFoint_X =				*
1.7e-003 *				
0.0003194999902195	6.000275254787334	1.623645418991480		
GradientVestor -				1
-0.001266578951659	-0.031655062355465	0.002912904910625		
405 ·				
<pre>[lx10 char] [lx12 char]</pre>				
ProbabilityCEFailure	50KH +			
GradientVector -				
-0.001226573931859	-6.601438062055466	0.002952904910423		
tan 7 🖛				
(1x92 cbar)				
<pre>dms = {lxt9 cher} [lxs2 cher] [lxs2 cher] ProbabilityOffeilure</pre>	_30RM -			
dno = {lxf0 char} {lx52 char} ProbabilityOffeilure 0.0173648771444293	_30RH -			
<pre>BDS = [lst0 cbar] [lst0 cbar] [lst0 cbar] ProbabilityOffsilure 0.01736197944295 30000_PaliabilityInder</pre>	_зови -			
00.9 - [1159 Char] [1199 Char] C.01736427144293 3084_PaltabiltyInder 2.111408276454203	_50834 =- < ~			
<pre>ens = [1x89 char] [1x89 char] [1x89 char] ProbabilityOffeilure 6,037364879445295 300M_PeisebilityTe549 2,131498376654920 3114_Z =</pre>	_306M - X -			
<pre>mn = - [1x80 char] [1x80 char] [1x80 char] (0.01736487744295 3000/_PulsabilityInder 2.111493776551920 312a_2 = 0.355510620515123</pre>	_зори - Х - 0.414547266767339	-0.2334562736~9723		Ĭ
0.0 [1x50 cbar] [1x50 cbar] [1x50 cbar] ProbabilityOffeilure 0.017364577645295 300W_PaisebilityInde 2.11165376654520 3.11ca_2 - 0.355610620515523 GradientVector =	_308H - X - 0.414347266767839	-0.2334562736~9723		1
cn [1x50 char] [1x52 char] [1x52 char] C.01736(57)44295 C.01736(57)44295 C.01736(57)44295 C.01736(57)45295 C.01736(57)45295 C.01736(57)45295 C.01736(57)45295 C.01746(57)45210	_50834 - x - 0.414542266767339 -0.0014580593059331	-0.2334562736°9723 0.602532910237241		
snp - [1x59 char] [1x52 char] [1x52 char] RrobabilityOffeilure 0.01736457744393 3000	_30834 - x = 0.4145422687678359 -0.001458059305931	-c.2344562736°9723 0.002532410237244		
Snp - [1x89 char] [1x89 char] [1x89 char] ProbabilityOffsilere 0.017366877044393 SORM_PaisabilityOffsilere 2.11140376659705 SORM_PaisabilityInder 0.3555610700515123 GradientVactor = -0.00126573951605 Dessiandarity =	 x = 0.414542268767839 -0.001458059305991 0.600000002673617	-0.2334562736*5723 0.002532510237244 6.000154017423215		

Figura F.4: Cálculo del Indice de Confiabilidad para $\alpha_D = 1.25$, $\alpha_L = 1.25$, $\alpha_S = 1$ y Z = 0.45, con un valor de ZS/I de 0.00006912435. Fuente: Propia.

Apéndice G

Diseño de Concreto Armado Etabs.

Se muestran los resultados obtenidos mediante el Módulo de Diseño de Concreto Armado del Programa Etabs v15.0 2015, para el pórtico ubicado en el eje 6-6.

Figura G.1: Resultados del área de acero requerida para las combinaciones de diseño del RNE. Fuente: Etabs.

Apéndice G. Diseño de Concreto Armado Etabs.

Figura G.2: Resultados del área de acero requerida para las combinaciones de diseño de la Propuesta. Fuente: Etabs.

Figura G.3: Resultados del área de acero requerida para las combinaciones de diseño del ACI. Fuente: Etabs.

Apéndice H

Fotografias Hospital Regional de Ayacucho

Se muestran fotografías del proceso de construcción del proyecto: Mejoramiento de la capacidad resolutiva del Hospital Miguel Ángel Mariscal Llerena de Ayacucho.

Figura H.1: Bloque A-Hall, Ingreso Principal proceso de construcción. Fuente: Propia.

Figura H.2: Bloque E-Unidad de emergencias proceso de construcción. Fuente: Propia.

Figura H.3: Bloque E-Unidad de emergencias proceso de acabados. Fuente: Propia.