UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA

FACULTAD DE CIENCIAS AGRARIAS ESCUELA DE FORMACIÓN PROFESIONAL DE AGRONOMÍA

"Rendimiento de Forraje en Ocho Variedades de Alfalfa (*Medicago sativa*L.) en Dos Pisos Ecológicos del Departamento de Ayacucho"

TESIS

PARA OBTENER EL TITULO DE INGENIERO AGRÓNOMO

Angelino Alfonso Santana Yangali

AYACUCHO - PERU

2009

"RENDIMIENTO DE FORRAJE EN OCHO VARIEDADES DE ALFALFA (Medicago sativa L.) EN DOS PISOS ECOLÓGICOS DEL DEPARTAMENTO DE AYACUCHO"

Recomendado

: 16 de diciembre de 2009

Aprobado

07 de enero de 2010

WILFREDO-DANIEL GONZÁLES GUZMAN Presidente del Jurado

ING. DIMAS ALBERTO QUINTANILLA MELGAR Miembro del Jurado

> ING. EDUARDO ROBLES GARCÍA Miembro del Jurado

Miembro del Jurado

M.Sc. ING. RAUL JOSE PALOMINO MARCATOMA Decano de la Facultad de Ciencias Agrarias

Con profundo cariño a mis padres Teodoro y en especial a mi querida madre Julia por su sacrificio y confianza depositada en mi persona.

A mí amada Elena y mí híja Fátíma

> A mís hermanos Angélica, Aydee, Rosa, Elva, Jessica, Juan y Teodoro.

AGRADECIMIENTOS

A la Universidad Nacional de "San Cristóbal de Huamanga" "Alma Mater" por haberme acogido en sus aulas durante mi formación profesional y a todos los docentes de la Escuela de Formación Profesional de Agronomía por haber contribuido eficazmente con sus conocimientos y experiencias en mi formación profesional y como persona.

Con profunda gratitud, expreso mis sinceros agradecimientos al Ing. Dimas Quintanilla Melgar, docente de la E.F.P. Agronomía; gestor y asesor del presente trabajo de investigación, quien dedicó su valioso tiempo para orientar y brindarme sus experiencias y conocimientos, desde el inicio hasta la culminación del presente trabajo.

Al Ing. Wilfredo D. Gonzáles Guzmán por sus oportunas orientaciones en la conclusión del presente trabajo.

Al Doctor Franz Horber, quien desinteresadamente dedicó su tiempo para contribuir sus experiencias en el presente trabajo.

CONTENIDO

	Pagina
INTRODUCCIÓN	6
CAPÍTULO I	
REVISIÓN DE LITERATURA	8
1.1. Origen y descripción botánica de la alfalfa	8
1.2. Sistemática	9
1.3. Variedades de alfalfa	10
1.4. Características morfológicas	13
1.5. Importancia de la producción forrajera de la alfalfa	14
1.5.1. Cultivo de la alfalfa en la Costa	15
1.2.2. Cultivo de la alfalfa en la Sierra	15
1.6. Manejo y producción	16
1.7. Calidad del forraje	17
1.8. Valor nutricional	18
1.9. Aprovechamiento de la alfalfa	
1.10. Requerimientos edafoclimáticos	23
1.11. Prácticas de abonamiento	26
1.12. Riego	29
1.13. Inoculación de leguminosas con Rhizobium	29
1.14. Principales enfermedades de la alfalfa	31
1.15. Dormancia o receso invernal	34
1.16. Trabajos de investigación realizados en la alfalfa	36
CAPITULO II	
MATERIALES Y METODOS	40
2.1. Ubicación del experimento	40
2.2 Antecedentes del campo experimental	41

2.3. Características físicas y químicas del suelo	41
2.4. Características climáticas	44
2.5. Método	54
2.6. Material experimental	54
2.7. Factores en estudio	55
2.8. Características de los tratamientos	55
2.9. Descripción del campo experimental y distribución de los tratamientos.	58
2.10. Instalación y conducción del experimento	60
2.11. Labores culturales	61
2.12. Eventos fenológicos evaluados	63
2.13. Diseño experimental	65
CAPITULO III RESULTADOS Y DISCUSIÓN	67
3.1. Parámetros de precocidad	
3.2. Parámetros de rendimiento en forraje verde y materia seca	
3.3. Análisis del combinado de las dos localidades en el rendimiento tot	
materia verde y materia seca	
CAPITULO IV	
CONCLUSIONES Y RECOMENDACIONES	82
CAPITULO V	
RESUMEN	85
BIBLIOGRAFIA CONSULTADA	
ANEXOS	90

INTRODUCCIÓN

La alfalfa (**Medicago sativa** L.) es un forraje importante para la alimentación animal, particularmente para el ganado productor de leche, ya que por sus cualidades nutricionales favorecen un buen desarrollo fisiológico del animal y altas producciones de leche a costos aceptables.

La alfalfa uno de los forrajes más difundidos en el mundo y representa la mayor área total de los pastos cultivados en los pisos de valles interandinos. Pese a su importancia agrostológica son muy limitados los estudios de las diferentes variedades y comportamiento agronómico en los diferentes pisos ecológicos, muy a pesar que se tienen recomendaciones en eventos científicos a una mayor producción forrajera en las zonas alto andinas.

Muchos investigadores mencionan que la falta de pastos en calidad afecta seriamente la producción pecuaria, problema que tiene como causa principal el mal manejo de los pastos desde la elección de variedades de alfalfa, siembra, riego, abonamiento, cosecha, etc.

Por otro lado, debemos entender que el objetivo no es simplemente tener amplias variedades de alfalfa con diferente adaptación a diferentes pisos ecológicos, si no el rendimiento, adaptación y manejo agronómico, tolerancia a enfermedades en nuestro medio, sobre las variedades que se encuentra en el mercado local, de modo que se pueda contribuir a la eficiencia económica de la producción pecuaria con pastos cultivados en la región.

Muchas variedades nuevas de alfalfa se vienen promoviendo en el medio como semilla importada por las empresas importadoras, sin el conocimiento de sus características agronómicas; motivo por el cual me he permitido plantear el presente trabajo titulado: "Rendimiento de Forraje en Ocho Variedades de Alfalfa (Medicago sativa L.) en Dos Pisos Ecológicos del Departamento de Ayacucho" y con el siguiente objetivo, determinar las variedades de alfalfa con buenos rendimientos en la producción de forraje con respuesta a dos pisos ecológicos (2750 y 3480) msnm, a fin de contribuir en incremento del piso forrajero y por esta razón consideramos los siguientes objetivos para condiciones similares del estudio:

Objetivo general:

Evaluar el rendimiento de forraje en ocho variedades de alfalfa, en dos pisos ecológicos de Chiara y Canaán.

Objetivos específicos:

- Determinar la variedad con mejores rendimientos en forraje verde y materia seca para los dos pisos agro ecológicos.
- Determinación del número de cortes por año/ha, precocidad y adaptación de ocho variedades de alfalfa a 2750 y 3480 msnm.

CAPITULO I

REVISIÓN DE LITERATURA

1.1 ORIGEN Y DESCRIPCIÓN BOTÁNICA DE LA ALFALFA

LASTRA (1906), MARTÍNEZ (1945), HANSON (1972) y DEL POZO (1983), manifiestan que la alfalfa es originaria de los sitios semiáridos de Asia Menor, Sur y Centro de Asia, Persia y Afganistán, donde han encontrado formas y especies a fines como plantas espontáneas de la región.

Los romanos lo apreciaban como forraje para los caballos de sus ejércitos, aquellos son los que llevaron de Grecia a Italia, de allí al sur de Francia, luego a España durante la invasión de los árabes. Posteriormente los descubridores españoles la llevaron a América Central (México) y del sur (Perú y Chile). Por aquel entonces, los romanos la llamaron "Hierba médica", a causa de su origen medo o persa, los griegos le pusieron por nombre Médipe o Médike, más tarde en Europa fue conocida por Luzerme por haberse cultivado mucho tiempo en Lucerma (Italia); luego los Árabes la llamaron Alfalfacah, que quiere decir el "mejor alimento o forraje" de allí proviene el de Alfalfa o Alfa, con que se le conoce en la actualidad.

Debido a diversos climas y situaciones en el que sean cultivado y se a formado una infinidad de variedades y ecotipos, paralelamente los diversos

trabajos de selección genética e hibridación han hecho posible la ampliación de su área de cultivo.

A nivel nacional el área de mayor cultivo de la alfalfa es la Costa, y en la Sierra ha logrado ser cultivada con creciente interés en las zonas del Altiplano de Puno, valles del Mantaro, Ayacucho, Cajamarca y entre otros.

En la actualidad esta especie es de gran importancia, sobrepasando su cultivo ha cualquier otra planta para forraje, por que sus cualidades más significativas son su rendimiento superior al de cualquier leguminosa y de la mayoría de las gramíneas, bajo diferentes condiciones ambientales.

La alfalfa es una planta perenne, con una raíz principal pivotante y robusta, numerosas raíces secundarias que permite la alta resistencia a las sequías y excelente nodulación de los Rhizobium. Es normalmente erecta, que facilita la siega, con coronas debajo de la superficie, sus hojas normalmente son trifoliadas, pecioladas y anchas. Posee además legumbre pubescente anular o en espiral, DEL POZO (1971).

1.2 SISTEMÁTICA

GONZALES (2002), en su manual práctico en "Manejo de pasturas y pastizales" describe de la siguiente manera:

Reino	 Vegetal
Sub-reino	 Embriófitas
División	 Antófitas
Sub-división	 Angiospermas
Clase	 Dicotiledóneas
Sub-clase	 Arquiclamídeas
Orden	 Rosales
Familia	 Leguminosa
Sub-familia	 Lotoideas

Nombre vulgar	Alfalfa.
Especie	 Medicago sativa L
Género	 Medicago
Iribu	 Trifolieas

1.3 VARIEDADES DE ALFALFA

Las variedades de alfalfa que se encuentran en el medio se describen a continuación:

- * Alfalfa Moapa 69.- Leguminosa desarrollada en USA, con Dormancia 8 tolerante a suelos con pH de 6.5 a 7.5, es una variedad que se adapta entre los 2, 000 a 3, 500 m.s.n.m. se puede usar en el pastoreo, corte, heno, etc. La duración en la pradera es hasta los 7 años según el manejo y fertilización, la producción de forraje es de 6 a 8 cortes/año y tiene un crecimiento erecto, de rápida recuperación después del corte. (Alabama S.A. 2007)
- * Alfalfa Super alabama SW8210.- Es una variedad de última generación, con Dormancia 8, especial para ganadería lechera, con 24-27% de proteína, de crecimiento rápido y raíces fuertes de procedencia americana. Su adaptación hasta los 3,500 m.s.n.m, se puede usar en el pastoreo, heno, ensilaje, etc. El intervalo de corte de 40 a 50 días, la duración en la pradera es de 4 a 6 años, dependiendo de su manejo y fertilización de mantenimiento. La producción de forraje de 8 a 11 cortes por año, fertilizar después de cada pastoreo o corte. (Alabama S.A. 2007)
- * Alfalfa Alta sierra.- Es una variedad antigua que está siendo desplazado por las últimas variedades, de procedencia peruana, con Dormancia 7, se adapta de 1,000 hasta los 3,800 m.s.n.m, su uso en el corte, pastoreo e ensilaje, su duración en la pradera es de 10 a 15 años, según el manejo y fertilización. La producción de forraje es de 8 a 10 cortes al año, es una

variedad de crecimiento erecto, de rápida recuperación y muy resistente a pulgones. (Comercial Santiago, 2 006) y otros autores.

- * Alfalfa W350, llamada como (variedad sintética o alfalfa Dormante).- Es una variedad con Dormancia 3.8 de excelente resultado debido a su alta resistencia al frío y nieve, de procedencia chilena, se adapta de 2,500 hasta los 4,200 m.s.n.m, su uso en el pastoreo, ensilaje y corte, su duración en pradera es de 5 a 8 años, según el manejo y fertilización. La producción de forraje es de 4 a 5 cortes al año, es una variedad de crecimiento erecto, de rápida recuperación, con 27% de proteína, coloración verde intenso en las hojas y con mayor número de tallos y hojas. (Alabama S.A. 2007)
- * Alfalfa Ranger.- Leguminosa perenne desarrollada en USA, con Dormancia 4 5, de excelente adaptación en los valles alto andinos del Perú, caracterizándose por su buena resistencia a condiciones adversas, responde óptimamente en alturas de 3,500 a 4,100 m.s.n.m. por lo que es solicitada por las ganaderos en el departamento de Puno, zonas altas de Arequipa y otras regiones del Perú, tolera a suelos con pH de 6.5 a 7.5, su densidad de siembra: 25 a 30 Kg. /Ha (www.semilleriamanrique.com. 2007)
- * Alfalfa CUF 101.- Es una variedad con Dormancia 9 que se adapta desde 1,000 hasta los 3,200 m.s.n.m, leguminosa desarrollada en USA, su uso en el corte (primer corte 60 a 90 días), pastoreo y ensilaje, su duración en la pradera de 4 a 6 años, según el manejo y fertilización, la producción de forraje es de 6 a 10 cortes al año, es una variedad de crecimiento erecto, de rápida recuperación. (Alabama S.A. 2007)
- * Alfalfa Super alabama W550.- Producida en Chile, con Dormancia 8.5 crece todo el año desde el nivel del mar hasta 2 800 m.s.n.m. de altura especial para costa Arequipa, Huancayo, Cajamarca, Cuzco y lugares similares y es una variedad poco difundida al sur del país. (Alabama S.A. 2007)

* Alfalfa Super alabama SW9720.- Son las últimas variedades que se viene promocionando en el mercado local, con Dormancia 9 que se adapta a zonas de valles interandinos, es de crecimiento rápido y raíces fuertes, el intervalo de corte de 40 a 50 días, la duración en la pradera dependerá mucho de su manejo y fertilización. (Alabama S.A. 2007)

OTRAS VARIEDADES:

- Alfalfa Moapa.- Leguminosa perenne desarrollada en USA, con Dormancia 8, de amplia adaptación en los valles Interandinos del Perú, de tallo vigorosos y frondosos, hojas grandes, con buena resistencia a los áphidos, fusarium, nemátodes. Es usado para pastoreo, corte ó ensilaje, de gran valor nutritivo y muy preferida por los ganaderos. Tiene sus mejores rendimientos hasta los 2,700 m.s.n.m. muy popular en la región Sur y Centro. Tolera suelos con pH de 6.5 a 7.5. Densidad de Siembra: 25 a 30 Kg. /Ha (www.semilleriamanrique.com. 2007)
- Alfalfa Moapa Superior.- Leguminosa desarrollada en USA, con Dormancia 8, de mayor producción que la Moapa, prospera bien en valles Interandinos, rinde 6% más de cosecha que la MOAPA y CUF, además después de dos años el 80% de las plantas de esta variedad sobreviven, mientras que la Moapa y Cuf solamente del 50 al 66%. Además tiene mayor resistencia a los áphidos, phytophtora, fusarium y nemátodes que las otras alfalfas. Se usa preferentemente en alturas de 1,000 a 2,700 m.s.n.m. Tolera suelos con pH de 6.5 a 7.5. Densidad de Siembra: 25 a 30 Kg. /Ha (www.semilleriamanrique.com. 2007)
- Alfalfa Super valle.- Variedad de última generación desarrollada en USA, con Dormancia 9, con desarrollo multifoliar mediano, excelente producción y alta resistencia a diferentes enfermedades como antracnosis, wilt, fusarium, áphidos de alfalfa, y a la podredumbre de la raíz producido por Phitophtora. Se desarrolla bien en zonas de climas secos, cálidos y semidesérticos con suelos

de pH 6.5 a 7.5, comparar con los diferentes tipos de Alfalfas como California, Topacio y Super Lechera. Densidad de Siembra: 25 a 30 kg. /Ha (www.semilleriamanrique.com. 2007)

- Alfalfa Super alabama SW8925.- Alfalfa con Dormancia 4 que se adapta desde los 3,000 a 4,300 m.s.n.m. su uso en pastoreo, corte y ensilado. Su duración en la pradera es perenne con producción de forraje de 4 a 5 cortes/año, con capacidad de carga de 2 a 3 animales por hectárea. Es de crecimiento erecto de rápida recuperación después del corte y resistencia a enfermedades. (Alabama S.A. 2007)
- Alfalfa Super alabama SW435.- Alfalfa americano peletizado con Dormancia 4, con adaptación desde los 3,000 a 4,300 m.s.n.m. su uso en pastoreo, corte y ensilado. Su duración en la pradera es perenne con producción de forraje de 4 a 5 cortes/año, con capacidad de carga de 2 a 3 animales por hectárea. Es de crecimiento erecto de rápida recuperación después del corte y resistencia a enfermedades. (Alabama S.A. 2007)

1.4 CARACTERÍSTICAS MORFOLÓGICAS.

www.inphoagro.com 2007, describe lo siguiente:

- Sistema radicular.- Raíz pivotante de varios metros, con distinto grado de ramificación, la raíz tiene un poder penetrante de 2 a 3 metros en condiciones favorables puede llegar a una profundidad de 9 a 11 metros. Este sistema radical profundo y la capacidad para utilizar agua a grandes profundidades del suelo, facultan a la alfalfa para tolerar condiciones de sequía donde otras especies no sobrevivirían.
- Tallos.- Son erguidos, ascendentes, herbáceos. En la base se diferencia una corona, compuesta por la base perenne y sub-leñosa de los tallos, lo cual se

ubica a nivel o ligeramente por debajo de la superficie del suelo. Posee numerosas yemas de renuevo, midiendo hasta más de 0.20 m de diámetro.

- Las hojas.- Son pinado trifoliadas, alternas y pecioladas. Los folíolos son de color verde oscuro, con el tercio superior del borde finamente dentado, de pecíolo acanalado. Su forma puede ser variable. Posee estipulas soldadas en la base del pecíolo, triangular y dentadas.
- Inflorescencia: Las flores son pequeñas, cortamente pediceladas, con cáliz campanulado con 5 dientes casi iguales. La corola es papiloidea azul violácea, excepcionalmente blanca, de aprox. 1 cm. de longitud.
- El fruto.- Es una vaina plegada sobre sí misma en espiral, de 1 4 vueltas, castaña o negruzca a la madurez. Tardíamente dehiscente sin elasticidad, con varias semillas.
- Las semillas.- Son pequeñas de formas arriñonadas y de tegumento amarillo a castaño.
- Peso de 1000: 2.2 gr.

1.5 IMPORTANCIA DE LA PRODUCCIÓN FORRAJERA DE LA ALFALFA.

La importancia del cultivo de la alfalfa va desde su interés como fuente natural de proteínas, fibra, vitaminas y minerales; así como su contribución paisajística y su utilidad como cultivo conservacionista de la fauna. Además de la importante reducción energética que supone la fijación simbiótica del nitrógeno para el propio cultivo y para los siguientes en las rotaciones de las que forma parte.

Por ser una especie pratense y perenne, su cultivo aporta elementos de interés como limitador y reductor de la erosión y de ciertas plagas y enfermedades de los cultivos que le siguen en la rotación. De igual manera su

importancia por su fijación de N_2 que oscila alrededor de 120-500 Kg N_2 /Ha/año haciendo que el abonamiento nitrogenado sea menor. (<u>Infoagro.com.</u> 2007)

1.5.1 Cultivo de la alfalfa en la Costa.

Las que mejor se han comportado en la Costa son las variedades: "San Pedro", existiendo el ecotipo de costa: "velluda peruana", con rendimiento de 12 a 14 T.M. de peso en verde por hectárea y por corte; obteniéndose 8 cortes por año y con una buena adaptación, le sigue la **Moapa** con rendimientos similares.

Se adapta bien al clima costeño y mejor aun a climas secos, donde exista humedad aprovechable. Resiste a la sequía, entrando en un periodo de latencia y reanudando su crecimiento cuando la humedad aprovechable vuelva. En lo referente al suelo, requiere suelo profundo, poroso, bien drenado y con pH neutro, no desarrolla bien en suelos ácidos, relativamente tolera suelos algo alcalinos. La fertilización recomendable en base a la formula (N-P-K), se recomienda (00-150-50), indudablemente es mejor supeditarse al análisis del suelo. La siembra se recomienda en la época de invierno, los meses de Mayo a Julio, se prefiere suelos profundos, con buen drenaje y buena capacidad retentiva de humedad con riegos frecuentes y evitar la falta de agua. GONZALES (2002).

1.5.2 Cultivo de la alfalfa en la Sierra

De mayor difusión por el alto rendimiento y calidad que proporciona los requerimientos nutricionales necesarios para la alimentación del ganado. Se recomiendan en las quebradas: las variedades Alta sierra, dupuits, resistador y

Moapa; en las zonas más altas se prefiere las del pastoreo o las de "corona" por debajo de la superficie del suelo, como la Wairau, ranger o búfalo.

Las siembras deben ser a inicio de las lluvias y en caso de que se cuenta con agua las siembras son todo el año. Se puede sembrar desde agosto hasta el mes de febrero y es recomendable siempre la inoculación.

Generalmente la mayor parte de las siembras se realizan en los valles interandinos y las quebradas, limitándose las siembras en las zonas alto andinas como la micro cuenca Allpachaka, Manallasacc y otros similares que por los suelos ácidos son limitados. GONZALES (2002).

1.6 MANEJO Y PRODUCCIÓN

El manejo adecuado del cultivo mediante siegas facilita el control sobre las malas hierbas, ayudando al mantenimiento y producción. Un alfalfar de secano ofrecerá su primer corte a los 120 días de sembrado si las condiciones climáticas han sido favorables. Para entonces el alfalfar ofrecerá un 10% de floración signo seguro de que las plantas han acumulado reservas suficientes en sus raíces para permitirle crecer nuevamente a partir de los rebrotes existentes.

En las zonas sobre los **3500 msnm**. Para el corte o cosecha el indicador de floración no es válido debido a la falta de temperatura los alfalfares no llegan a florear .Para estas zonas el indicador que se tomará en cuenta como se mencionó anteriormente es el crecimiento de los rebrotes de la corona, los cuales cuando alcanzan una dimensión de 5 a 7 cm. nos indican la madurez de la planta para el corte o pastoreo. (<u>infoagro.com.</u> **2007.**)

Para las zonas con climas muy fríos que generalmente se dan sobre los 4000 msnm. Suele suceder que a los 120 días de sembrado el alfalfar (generalmente mes de Abril) las plantas de alfalfa no han llegado a acumular las reservas necesarias que le permitan pasar el Invierno sumamente crudo en esas alturas, por lo tanto se debe tener como norma el no cortar el follaje bajo ningún concepto hasta que inicie la Primavera siguiente y permitir que la planta se marchite gradualmente hasta pleno Invierno. (infoagro.com. 2007.)

Para medir el rendimiento se debe esperar el tercer corte, por que las plantas para este corte ofrecerán, no solamente rebrotes coronarios sino también rebrotes axilares, por lo tanto recién mostraran mayor cantidad de follaje.

Al cortar el follaje para entrega al ganado es prudente calcular la cantidad en alfalfa verde para alimentar el hato durante tres días y si ese corte no utiliza el total de la parcela, el resto debe ser cortarlo para secarlo (Henificación). Este forraje seco es excelente forraje para el invierno y no produce timpanismo (hinchazón). (infoagro.com. 2007)

LEITH y otros, (1978), afirman que un manejo adecuado es no pastorear más de siete días seguidos en las condiciones del Altiplano de puno (3950 msnm.), debido a que los primeros brotes son el éxito de un eficaz rendimiento, descuidados estos (con un sobre pastoreo), se tendrán nuevos brotes de más lento crecimiento y de menor producción forrajera. Desde entonces la alfalfa sometida aun buen manejo debe durar más de diez años o de lo contrario la alfalfa bajará su producción.

RUÍZ (1972), afirma que el manejo de la alfalfa al corte, que después de un establecimiento debe permitirse una caída de hojas a un segundo corte para lograr el desarrollo de la raíz y la acumulación de sus reservas nutritivas a fin de conseguir un alto rendimiento en la vida productiva posterior de la alfalfa.

1.7 CALIDAD DEL FORRAJE

DE ALBA (1973), considera a la alfalfa como un forraje tosco y voluminoso, y sus valores en las tablas de composición sufren variaciones debido a una serie de factores como: la maduración o edad de la planta, los efectos de la temperatura, humedad y luz, la rapidez con que crece, efecto del suelo o fertilización, el manejo, frecuencia de cortes, altura, intensidad de cosecha, la selección de variedades, etc.

MORRISON (1969), menciona que un buen forraje puede ser tan rico en proteínas por unidad de materia seca, ya que los diferentes análisis han demostrado que los pastos tiernos tienen un elevado contenido de proteína, calcio, fósforo; sin embargo, la palatabilidad, su digestibilidad y el contenido de nutrientes van disminuyendo a medida que el pasto madura.

GONZALES (1964), reitera que ha medida que las plantas maduran el tipo de fibra que contiene es de difícil digestión por la acción de las bacterias del rumen, e interfiere la eficiente utilización de la proteína, minerales de las plantas; en este sentido muchos autores coinciden con Morrison, que a partir del inicio de floración, aumenta la proporción de los hidratos de carbono solubles e insolubles y disminuye la proporción de proteína disminuyendo la palatabilidad y digestibilidad del forraje.

TAPIA (1974), manifiesta que un sistema de conservación de un forraje en el estado de mejor calidad reviste mucha importancia en nuestra zona Alto andina, debido a que las condiciones más rigurosas del clima nos obligan a dar mayor atención al henificado; teniendo como base el uso de forrajes verdes.

DAVIES (1962), enfatiza que debemos aprender a utilizar y tratar a la alfalfa, de tal manera que retenga su suculencia y riqueza nutritiva.

1.8 VALOR NUTRICIONAL

La alfalfa es una excelente planta forrajera que proporciona elevados niveles de proteínas, minerales y vitaminas de calidad. Su valor energético también es muy alto estando relacionado con el valor nitrogenado del forraje. Además es una fuente de minerales como: calcio, fósforo, potasio, magnesio, azufre, etc. (Infoagro.com. 2007)

Cuadro 1.1: Composición de la materia seca de hojas y tallos de la alfalfa.

Composición %	Hojas	Tallos
Proteína bruta	24	10.7
Grasa bruta	3.1	1.3
Extracto no nitrogenado	45.8	37.3
Fibra bruta	16.4	44.4
Cenizas	10.7	6.3

Fuente: infoagro.com 2007.

MARTÍNEZ (1945), señala que según **Wolf**, la alfalfa fresca tiene la siguiente composición.

Cuadro 1.2: Composición química (%) de alfalfa fresca.

Composición	Nivel %
Agua	75.3
Nitrógeno	0.72
Fósforo	0.15
Potasio	0.45
Cenizas	1.76
Calcio	0.85

Esta composición es variable según la fertilidad del suelo, estado fenológico de la planta y el clima en que se cultive. Durante su vegetación, antes de floración, la alfalfa contiene más agua y más nitrógeno; durante la floración más materia orgánica, cenizas, etc.

Cuadro 1.3: Composición química de la alfalfa en verde, comparación con otros forrales y piensos:

Constituyente	Alfalfa verde %	Maíz forrajero %	Maíz grano %	Habas %
Materia seca	19.9	17.2	87.4	89.1
Proteina bruta	5.6	1.0	10.4	25.8
Grasa bruta	0.8	0.4	4.5	1.1
E.E.N.	7.2	8.9	68.1	50.6
Fibra cruda	4.4	5	2.9	8.3
Cenizas	1.9	1.5	1.4	3.3

Fuente: infoagro.com 2007.

HUGHES (1984), manifiesta que para forraje como la alfalfa, un contenido de 2 al 2.5% de potasio parece ser satisfactorio, no siendo raro encontrar de 3 a 4%.

Es la más rica en valor nutritivo, produce aproximadamente, el doble de proteína que el trébol, es rica en minerales y contiene por lo menos 10 vitaminas diferentes.

HANSON (1972), señala que el interés químico de los cultivos forrajeros como la alfalfa, estriba principalmente en los componentes de las partes aéreas de la planta que producen efectos benéficos ó deletéreos en la calidad del alimento. La gran variabilidad de las cantidades relativas de los diversos constituyentes del material vegetal se debe principalmente a los distintos ritmos de crecimiento a causa del suelo, clima y de las diferencias en el estado de madurez. La mayor parte de la proteína celular se encuentra en el citoplasma y en sus inclusiones, los cloroplastos, en forma de gel, donde se llevan acabo las reacciones fotosintéticas.

Cuadro 1.4. Composición alimenticia de la alfalfa cortada al inicio de floración (10% de floración) de la parte aérea.

Determinaciones	Tal como ofrecido	En base seca
Materia seca (%)	26,1	100,0
Coeficiente de digestibilidad in vitro MS (%)	64,0	64,0
Materia orgánica (%)	23,1	88,6
Ceniza (%)	3,0	11,4
Fibra cruda (%)	7,4	28,4
Extracto etéreo	0,7	2,7
Extracto libre de Nitrógeno	9,1	34,8
Proteína (%)	5,9	22,7
Proteína digestible en vacuno (%)	4,5	17,2
Proteína digestible en cabra (%)	4,6	17,8
Proteína digestible en caballo (%)	4,4	16,8
Proteína digestible en conejo (%)	4,2	16,2
Proteína digestible en ovino (%)	4,7	18,2
Paredes celulares (Van Soest) (%)	14,1	53,9
Celulosa (Van Soest) (%)	7,1	27,1
Fibra ácido detergente (%)	8,7	33,4
Hemicelulosa (%)	5,3	20,5
Lignina (%)	1,5	5,6
Energía digestible para vacuno (Mcal. /Kg.)	0,7	2,7
Energía digestible para ovino (Mcal. /Kg.)	0,7	2,8
Energía metabolizable en vacuno (Mcal. /Kg.)	0,6	2,2
Energía metabolizable en ovino (Mcal. /Kg.)	0,6	2,3
E. neta de mantenimiento para vacuno (Mcal./Kg.)	0,3	1,3
E. neta de ganancia de peso en vacuno (Mcal./Kg.)	0,2	0,7
E. neta en lactación en vacuno (Mcal. /Kg.)	0,4	1,5
Nutrientes digestibles totales para vacuno (%)	15,7	60,4
Nutrientes digestibles totales para ovino (%)	16,4	62,7

GONZALES (2002), según Tello R, T. (1982). Cultivo de alfalfa en el CRIA II-INIPA. Chiclayo.

1.9 APROVECHAMIENTO DE LA ALFALFA

- En verde.- La alfalfa en verde constituye una excelente forma de utilización por su buena calidad y digestibilidad. Lo recomendable es usarlo al corte y pastoreo. Si se usa "al corte" el cultivo puede durar 15 años en el campo y 8 años si es "al pastoreo"
- Ensilado.- Es un método de conservación de forrajes por medios biológicos, para conseguir un ensilado de calidad, el forraje debe contener un elevado porcentaje en materia seca (40%) debiendo estar bien picado para conseguir un buen apisonamiento en el silo.
- Henificado.- El uso de la alfalfa como heno es característico de regiones como la nuestra, con elevadas horas de radiación solar. El proceso de Henificación debe conservar el mayor número de hojas posibles, pues la pérdida de las mismas supone una disminución de la calida, ya que las hojas son las partes más digestibles y como consecuencia se reduce el valor nutritivo. En la siguiente tabla se muestra la extracción de elementos nutritivos de un cultivo de alfalfa en condiciones de regadío para producir una tonelada de heno.

Cuadro 1.5: Extracción de nutrientes por tonelada de Heno.

Nutrientes	N (Kg/t)	P ₂ O ₅ (Kg/t)	K₂O (Kg/t)	CaO (Kg/t)
Alfalfa (Heno)	25-30	5-9	20-26	300

Fuente: infoagro.com. 2007, según (Gros y Domínguez, 92).

1.10 REQUERIMIENTOS EDAFOCLIMÁTICOS

Infoagro.com. 2007, manifiestan lo siguiente:

La alfalfa, se desarrolla desde el nivel del mar hasta los 5,000 msnm, prosperan sin problemas tanto bajo el régimen de lluvias como bajo riego, su rendimiento es máximo en suelos francos, profundos y de buena aeración, pero aceptan igualmente suelos pesados, arcillosos y poco profundos y de máxima pendiente, no aceptan suelos sin drenaje, inundables y ácidos.

La alfalfa, es una especie que requiere para su crecimiento poca humedad y suelos bien drenados, neutros a alcalinos, pero también puede ser cultivada en suelos moderadamente ácidos; sin embargo no tolera climas húmedos con altas temperaturas, y podemos comprobar fácilmente su mal comportamiento en terrenos húmedos tropicales y subtropicales con suelos ácidos.

Para el caso de cultivo en secano, que se propone para la mayoría de nuestra Sierra, necesitan humedad durante no menos de 120 días continuos y prosperan en zonas con precipitaciones de hasta 400 mm por año. Las zonas con más de 800 mm de precipitación pluvial demandan terrenos muy bien drenados y profundos. Por encima de precipitaciones de 1.000 mm los suelos por lo general son más ácidos y siendo mayor la humedad, las enfermedades foliares son muy frecuentes y la permanencia del alfalfar es corta. En zonas donde son frecuentes las granizadas, proteger la alfalfa con nodriza, cebada o avena con una protección no mayor a 10 Kg. de cebada o avena por Ha.

La Radiación solar, es un factor muy importante que influye positivamente en el cultivo de la alfalfa, pues el número de horas de radiación solar aumenta a medida de que disminuye la latitud de la región.

La Temperatura, la semilla germina a temperaturas de 2 - 3° C siempre que las demás condiciones ambientales lo permitan. A medida que se

incrementa la temperatura la germinación es más rápida hasta alcanzar un óptimo a los 28 – 30 °C. Temperaturas superiores a 38 °C resultan letales para las plántulas. Al comenzar el invierno detienen su crecimiento hasta la llegada de la primavera comienzan a rebrotar. Existen variedades de alfalfa que toleran temperaturas muy bajas (- 10°C). La temperatura media anual para la producción forrajera esta entorno a los 15 °C. Siendo el rango óptimo de temperaturas según las variedades de 18- 28 °C.

El pH, es el factor limitante en el cultivo de la alfalfa, que es la acidez, excepto en la germinación pudiendo ser hasta un pH de 4. El pH óptimo del cultivo es de 7.2, recurriendo a encalados siempre que el pH baje de 6.8, además los encalados contribuyen a incrementar la cantidad de iones de Calcio en suelo disponible para la planta y reducir la absorción de Aluminio y Manganeso que son tóxicos para la alfalfa. Existe una relación directa entre la formación de nódulos y el efecto del pH sobre la alfalfa.

Figura 1.1. Disponibilidad del Ca, P, K, Fe, Al, en los suelos según pH.

Fuente: TORRES (2007)

La absorción de nutrientes por las alfalfas en función de la acidez del terreno, como se demuestra en el gráfico incorporado anteriormente, la absorción de calcio, fósforo y potasio no es posible cuando la acidez es alta y esta situación se complica aún más por que con altos niveles de acidez en el terreno el aluminio es tomado por las radículas y este elemento además de bloquear la absorción de nutrientes, mata las radículas y por ende termina marchitando las plantas de alfalfa.

Es necesario resaltar que la absorción de fósforo por la planta, se realiza mediante el intercambio de iones calcio por iones fósforo de manera que la presencia de Calcio es imprescindible y en terrenos ácidos su ausencia es mayor.

Los tipos de suelos que la alfalfa requiere es un suelo profundo y bien drenado, aunque se cultiva en una amplia variabilidad de suelos. Los suelos con menos de 60 cm. de profundidad no son recomendables para el cultivo de la alfalfa. (Fuente: infoagro.com 2007)

GONZALES (2002), señala que en lo general se recomiendan suelos de buena profundidad, fértiles y con un buen drenaje y el pH preferentemente cercano al neutro (6.5 – 7.5). En caso de suelos ácidos recomienda encalar previamente un mes antes de la siembra y que la fertilización será en función al análisis de los suelos.

MUSLERA y RATERA (1984), señalan que la alfalfa se amolda a una amplia variedad de suelos y climas. Es una planta muy adaptada a suelos profundos, bien drenados o alcalinos. No desarrolla en suelos con pH inferior a 5.6 en los cuales es necesario el encalado para la supervivencia y multiplicación del Rhizobium específico. Es poco tolerante al encharcamiento a consecuencia de la toxicidad por el aluminio lo cual perjudica la supervivencia de la planta y duración de la pradera, sin embargo, es moderadamente tolerante a la salinidad.

JUSCAFRESCA (1980), señala que la alfalfa se adapta a todos los suelos ya sean de regadío o de secano y en climas relativamente fríos o templados.

DOMÍNGUEZ (1984), manifiesta que el factor principal para el desarrollo de la alfalfa es la profundidad del suelo, con pH superior a 6.5, siendo aconsejable el encalado en suelos ácidos, para crear condiciones adecuadas para el desarrollo del Rhizobium. La alfalfa es muy resistente al frió hasta 15° C bajo cero, pasa el invierno en estado de reposo. Temperaturas excesivas (38°C) perjudica las plantas jóvenes.

MORÓN (2000), afirma que la acidez del suelo afecta el crecimiento de algunas especies forrajeras, en especial las leguminosas. Al aumentar la acidez, se incrementa la solubilidad del aluminio, hierro y manganeso pudiendo llegar a niveles tóxicos. Además hay una menor actividad de los organismos que descomponen la materia orgánica, dando menores niveles de N, P y S disponibles. También la fijación simbiótica de N₂ por parte de las leguminosas se reduce notablemente. Entre las forrajeras, la alfalfa es un cultivo de gran sensibilidad a la acidez del suelo y que altos rendimientos se obtienen cuando el pH es de 6.5 o superior ya que mejora la nodulación y se logra un mejor establecimiento, persistencia y desarrollo del cultivo.

ESPINOSA y MOLINA (1999), revelan que la acidez del suelo tiene un efecto negativo sobre las leguminosas debido a que afecta la fijación del nitrógeno, disminuye la cantidad de nódulos y reduce la disponibilidad de fósforo y molibdeno. La alfalfa, que es la principal forrajera disminuye su capacidad de producción al ser cultivada en estos suelos.

1.11 PRÁCTICAS DE ABONAMIENTO

Las alfalfas para un normal crecimiento demandan la provisión en cantidades mayores de los siguientes elementos Fósforo "P", Potasio "K", Calcio "Ca" y Nitrógeno "N".

Se considera que un alfalfar que por corte nos proporciona 10 TM de materia seca ha extraído del suelo: 520 kilogramos de Nitrógeno, 360 kilogramos de potasio, 320 kilogramos de Calcio y 96 kilogramos de fósforo.

Consideramos que las alfalfas debido a la simbiosis con Rhizobio obtienen cantidades más que suficientes de Nitrógeno atmosférico "N₂" provenientes de la simbiosis. (Caritas del Perú, 2003)

Infoagro.com 2007, según (Gros y Domínguez, 92), proponen lo siguiente:

- Nitrógeno.- En condiciones óptimas de cultivo; cuando el pH no es muy ácido no existe déficit de ningún elemento esencial, la alfalfa obtiene el nitrógeno por las bacterias de sus nódulos. Pero durante el estado vegetativo de las plántulas, en proceso de implantación éstas requieren nitrógeno del suelo, hasta que se formen los nódulos y comience la fijación. Por tanto se debe abonar 20 Kg. /ha de nitrógeno, pues cantidades mayores producirán un efecto negativo al inhibir la formación de nódulos.
- Fósforo.- La fertilización fosfórica es muy importante en el año de establecimiento del cultivo, pues asegura el desarrollo radicular. Como el fósforo se desplaza muy lentamente en el suelo se recomienda aplicarlo en profundidad incluso en el momento de la siembra con la semilla. En alfalfares de regadío con suelos arcillosos y profundos la dosis de P₂0₅ de fondo para todo el ciclo de cultivo es de 150-200 Kg. /ha. y como fertilización de mantenimiento es de 80 120 Kg. /Ha/Año.
- Potasio.- La alfalfa requiere grandes cantidades de este elemento, pues de él depende la resistencia al frío, sequía y almacenamiento de reservas. Se recomienda aplicar abonado potásico de fondo antes de la

siembra junto con el fósforo. El abonado potásico de mantenimiento se realizará anualmente a la salida del invierno. En suelos pobres se recomienda un abonado potásico de fondo de 200-300 Kg. /ha y restituciones anuales de 100-200 Kg. /ha.

- Molibdeno Los suelos ácidos pueden presentar carencia de molibdeno, que afecta al funcionamiento de las bacterias fijadoras de nitrógeno. El fósforo y la Cal favorecen la absorción y disponibilidad del molibdeno en el suelo. Los síntomas de carencia coinciden con los del nitrógeno y se suelen dar en terrenos arenosos y muy ácidos. Cuando es preciso añadirlo al terreno, suele hacerse en forma de molibdato sódico o amónico.
- Orgánicos.- Se aplican productos orgánicos de origen vegetal o animal
 en diferentes grados de descomposición; cuya finalidad es la mejora de
 la fertilidad y de las condiciones físicas del suelo. Las sustancias
 orgánicas más empleadas son: estiércol, purines, rastrojos y residuos de
 cosechas.
- Enmiendas calizas.- Son materias fertilizantes que contienen calcio y magnesio en forma de óxidos, hidróxidos o carbonatos. La finalidad de la enmienda cálcica es mantener o incrementar el pH del suelo así como mejorar las propiedades del mismo. Estas enmiendas se emplean principalmente en zonas con suelos ácidos de 3 a 5 TM/Ha.

1.12 **RIEGO**

SANCHÉZ (2004), manifiesta que con riegos mecanizados se aplicarán entre 1500 y 2000 m³/ha entre cortes, de igual manera los riegos deben darse con la antelación suficiente para tener suelos secos cuando entren los equipos de recolección, ya que hacen mucho daño al aplastar las plantas en suelo húmedo. La cantidad de agua aplicada depende de la capacidad de retención de agua por el suelo, de la eficiencia del sistema de riego y de la profundidad de las raíces. En zonas con estaciones húmedas y secas definidas el riego proporciona seguridad en caso de sequía durante la estación normalmente húmeda y para una producción de heno o pasto durante la estación seca.

Infoagro.com 2007, puntualiza que el aporte de agua en caso de riego por gravedad es de 1000 m³/ha. En riego por aspersión será de 880 m³/ha.

1.13 INOCULACIÓN DE LEGUMINOSAS CON RHIZOBIUM.

(Laboratorio de Rhizobilogía – Programa de Pastos y Ganadería – UNSCH), mencionan los siguientes:

¿Qué son los inoculantes o biofertilizantes?

Los inoculantes RIZOMACK son concentrados de bacterias del género Rhizobium que cuando son inoculados en las semillas de las leguminosas, penetran a través de los pelos radiculares, provocando una multiplicación celular del tejido vegetal que conduce a la formación de nódulos. En esa asociación simbiótica, los rizobios otorgan nitrógeno atmosférico a las leguminosas y ellas reciben de la planta los alimentos constituidos principalmente de carbohidratos.

¿Qué se gana usando los inoculantes Rizomack?

- Mayor producción y productividad de leguminosas.
- Mayor rendimiento de proteína.
- ❖ Disminuir o reemplazar el uso de fertilizantes nitrogenados como la urea.
- Enriquecer el suelo con nitrógeno por la fijación biológica.
- * Reduce los costos en fertilización Nitrogenada.

a. Proceso de inoculación a la semilla.

Inoculación simple.- Se prepara la solución azucarada al 10% (100gr. de azúcar por litro de agua) en cantidad recomendada. Sobre esta solución se vierte el inoculante Rizomack específico.

Se mezcla el inoculante con la solución azucarada, hasta formar una suspensión del inóculo. Luego se añade la semillas que queden bien humedad y cubiertas del inóculo. Se deja secar en un lugar sombreado y se procede a la siembra.

b. Proceso de inoculación al suelo.

Se recomienda cuando las semillas están desinfectadas. Para una hectárea se mezcla 3 kg. de inoculante con 100 kg. de tierra. Se aplica al suelo como cualquier abono. También se puede suspender el inoculante en agua y aplicar al suelo con un aspersor.

¿Qué cuidados se deben tener en cuenta durante la inoculación?

Se debe observar siempre la fecha de validez del producto, nunca usar el inoculante después de la fecha de vencimiento.

- Jamás exponer el inoculante al sol, la inoculación debe ser realizado en la sombra.
- ❖ Las semillas inoculadas deben ser sembradas en las horas más frescas del día (de mañana o de tarde, nunca en las horas de altas temperaturas).
- Usar inoculante específico para cada tipo de semilla de leguminosa.
- Semillas peleteadas con inoculantes no deben almacenarse por más de tres semanas.

1.14 PRINCIPALES ENFERMEDADES DE LA ALFALFA

SÁNCHEZ (2004) y Cáritas (2008), señalan las principales enfermedades más resaltantes en el cultivo de la alfalfa:

a. Mildiú

Descripción: Es una enfermedad fungosa (hongos), afecta principalmente a las hojas tiernas de las plantas de la parte superior. Los síntomas se observa principalmente en las hojas como manchas ligeras cloróticas, blanquecinas por el Has y con presencia de signo de la enfermedad por el envés de la hoja.

Control del MILDIÚ: una forma de reducir el avance del mildiú es realizando el corte antes del inicio de la floración y quemarlo fuera de la parcela. Otra forma es fumigar con legía de cojín con 02 a 03 cucharadas por una mochila de 15 litros y así existe otras de controlar de controlar el mildiú.

b. Mancha negra y parda

Descripción: Es una enfermedad fungosa que afecta a todas las variedades de alfalfa en la sierra. Los síntomas comienzan antes de la

floración, en pleno crecimiento de las plantas, debido posiblemente al exceso de humedad en la temporada de lluvias; en las hojas aparecen pequeños puntos negros y marrones visibles que cubren toda la hoja. Poco a poco se ponen amarillentas y van desprendiéndose del tallo. Con esta enfermedad se aprecian tallos que no tienen hojas en la parte inferior y media, quedando las hojas solamente en el tercio superior de la planta.

Se puede prevenir aplicando productos caseros como en el caso anterior, lejía o agua de ceniza después del corte y repitiendo la fumigación de por lo menos dos veces antes de 20 días para el siguiente corte.

c. Fusariosis.

Descripción: Es otra enfermedad de importancia en los campos de alfalfa. Las plantas enfermas muestran síntomas de clorosis pronunciada, previos a la marchitez y defoliación de los tallos. Las plantas son afectadas a cualquier edad, de manera que después del corte, los rebrotes también comienzan a mostrar clorosis a edad temprana. La Fusariosis llega amatar a las plantas en poco tiempo.

El control de Fusarium es bastante dificil por que el hongo penetra al interior del tejido de la planta, causando muerte de raíces pequeñas, alcanzando al xilema y manteniéndose en la corona de la planta. Por lo general el hongo actúa rápido en la planta y no da tiempo para prevenir la infección; cuando este problema se generaliza, preferible sembrar otra especie de cultivo.

La prevención de la Fusariosis consiste en tener conocimiento de antecedentes del terreno, si anteriormente hubo este problema en otro cultivo; debe tratarse la semilla con desinfectantes químicos. Cuando ya

se presentó la enfermedad es mejor extraer las plantas afectadas, donde al inicio son pocas y se puede evitar la diseminación del hongo.

d. Verticiliosis.

Descripción: Esta enfermedad se presenta con frecuencia en muchos alfalfares de sierra y costa, pero los daños dependen de la susceptibilidad de la variedad de alfalfa, este patógeno invade la parte interior de los tallos, sobre todo el xilema. Cuando el hongo se encuentra en el campo de cultivo, puede afectar a todas las variedades de alfalfa. Los síntomas son muy visibles en el campo, se observan plantas enfermas aisladas o en pequeños grupos que muestran marchitez y muerte de las hojas superiores; generalmente es afectada toda la mata de tallos, por que el hongo se hace sistémico en la planta.

La diseminación del hongo es favorecido con riego por inundación, que en poco tiempo el hongo invade todo el campo. Casi siempre, la verticiliosis se asocia con la Fusariosis, por que ambos son patógenos e ingresan a la planta mediante heridas de nematodos o heridas que se desarrollan durante el corte.

El control de la verticiliosis no es sencillo; resulta complicado y difícil como la Fusariosis, por que el hongo está dentro de la planta y también se localiza en la corona. Los fungicidas no son apropiados por que no llegan donde está localizado el hongo. Conviene extraer plantas enteras que se hallan afectadas en los inicios de la enfermedad.

e. Virosis.

La alfalfa es afectada por varios virus que se transmiten por pulgones y la semilla; la infección sistémica (interna) hace que toda la planta esté afectada por los virus, pero los síntomas solamente se observan en las hojas. En estas plantas se aprecian deformaciones de hojas, enanismo

de hojas y tallos, mosaico y clorosis, encrespamiento de hojas. El crecimiento se detiene, la producción se disminuye y las plantas enfermas no se recuperan.

La virosis no tiene control químico, sino más bien controles culturales, que comienzan desde el uso de semilla sana y certificada. También es recomendable extraer las plantas enfermas desde la raíz. No se recomienda el control de pulgones, aunque la mayoría de agricultores aplican insecticida a la alfalfa.

f. Fitóftora

La fitóftora es un grave problema en áreas, donde existen condiciones de alta humedad y suelos de lenta a muy lenta permeabilidad. También puede ser un problema en áreas de regadío donde no se efectúa un adecuado manejo del agua (riegos excesivos, mala sistematización del terreno, etc.). Los síntomas en la parte aérea de la planta incluyen una reducción del crecimiento y un amarillamiento del follaje. En la raíz se presentan lesiones oscuras, aisladas o coalescentes, que en casos severos originan el seccionamiento de la raíz principal. El hongo causal de la podredumbre húmeda encuentra condiciones óptimas para su desarrollo cuando el suelo permanece anegado, encharcado o excesivamente húmedo por varios días (> 3 o 4).

1.15 DORMANCIA O RECESO INVERNAL

Para todas las personas que cultivan la alfalfa y campesinos asentados en nuestra Sierra Alto-andina y Valles interandinos, es sumamente importante conocer y entender que significa el receso invernal comúnmente denominado Dormancia. Este conocimiento les permitirá utilizar una variedad apropiada para un determinado medio, sea en secano, riego y en climas con heladas de

lograr el rápido secado del forraje, se produce una caída muy importante en la calidad, fundamentalmente cuando se trabaja con alfalfa. Autores: Luís A. Romero, José M. Méndez y Oscar A. Bruno.

g. EL "REJUVENECIMIENTO" DE PASTURAS DEGRADADAS DE ALFALFA

Resumen: "La longevidad de las pasturas de alfalfa es muy variable y depende de factores "de manejo" dentro de los cuales se pueden mencionar: la carga animal (cantidad, oportunidad, estado del "piso"), el uso de herbicidas (correcto o no), el efecto de las labranzas (buenas o malas condiciones físicas y químicas), etc. Cuando la vida del "alfalfar" está llegando a su fin, se pueden tomar dos decisiones: eliminar la pastura o prolongar su aprovechamiento (denominado en la práctica "rejuvenecimiento")".

Autores: Hugo Fontanetto, Oscar Keller, Susana Guaita y Fabián Tommasone. INTA - Instituto Nacional de Tecnología Agropecuaria.

h. ENCALADO EN ALFALFA

Resumen: "La alfalfa, al ser la principal forrajera de los sistemas ganaderos de la región pampeana, ve seriamente afectada la capacidad de producción al ser cultivada en suelos con una acidez edáfica marcada. Esto tiene un efecto negativo sobre las leguminosas debido a que afecta la fijación del nitrógeno, disminuye la cantidad de nódulos y reduce la disponibilidad de fósforo y molibdeno. El objetivo de la experiencia fue evaluar el efecto del encalado sobre algunas propiedades químicas del suelo y la producción de materia seca de la alfalfa".

Autores: Sebastián Gambaudo, Alberto Zampar y Leandro Tomatis. INTA - Instituto Nacional de Tecnología Agropecuaria. Santa Fe, Argentina 1999. **FUENTE "Índice Agrario" de Alejandra M. Nardi**

CAPITULO II

MATERIALES Y MÉTODOS

2.1 UBICACIÓN DEL EXPERIMENTO

Ambas zonas donde se realizó los trabajos de investigación se encuentran ubicados dentro de la jurisdicción de la Provincia de Huamanga, Departamento de Ayacucho.

Canaán, centro experimental de la Universidad Nacional de San Cristóbal de Huamanga, situado a 4 Km. del centro de la ciudad; aproximadamente entre 13º 16' 00" de latitud Sur y a 74º 12' 27" de longitud Oeste, cuya altitud es de 2750 msnm. en el Distrito de San Juan Bautista, Provincia de Huamanga.

Intihuasi, comunidad concerniente al Distrito de Chiara, ubicada a 35 Km. de la ciudad de Huamanga; aproximadamente entre 13º 16' 36" de latitud Sur y a 74º 12' 03" de longitud Oeste, cuya altitud es de 3480 msnm. en el Distrito de Chiara, Provincia de Huamanga.

Cuadro 2.2. Interpretación del cuadro de análisis de los suelos, según (Molina y Meléndez, 2002).

Lugar	Canaán, 2 750 msnm.	Chiara, 3480 msnm.		
pH (H ₂ O)	7.1, Prácticamente neutra	5.80, Moderadamente ácida		
Materia orgánica %	1.32, Muy bajo	5.96, L. Alto, óptimo		
Nitrógeno total %	0.07, Bajo	0.29, Alto		
Elementos disponib.				
(ppm)				
Fósforo disp. (P)	47.03, Alto	28.06, Bajo		
Potasio disp. (K)	90, Muy bajos	72, Muy bajos		
Azufre disp. (S)	27.2, óptimo			
Elementos cambiab.				
(meq/100g)				
Ca ⁺⁺	25.7, Alto	3.7, Bajo		
Mg ⁺⁺	23.68, Alto	0.4, Bajo		
K⁺	1.96, Alto	0.78, Óptimo		
H⁺		1.78		
Al ⁺⁺⁺	0.46	2.80		

La interpretación del análisis de fertilidad y caracterización textural de los suelos del experimento según los criterios planteados por (Molina y Méndez, 2002).

<u>Suelos de Canaán</u>: pH en agua es prácticamente Neutra, es pobre en materia orgánica, contenido bajo en nitrógeno, contenido alto en P, Ca, Mg y K. <u>Suelos de Chiara</u>: pH en agua es considerada moderadamente ácida, es óptimo en materia orgánica, contenido alto en nitrógeno, contenido bajo en P, Ca, Mg y K.

2.4 CARACTERÍSTICAS CLIMÁTICAS

Canaán, está ubicada climatológicamente según la altura en la zona quechua, esta zona baja se caracteriza por poseer fondos planos o llanos. El clima es templado y seco, con una temperatura promedio de 17 °C y una humedad relativa promedio de 56 %. Está considerado este clima, adecuado para este cultivo; y los principales cultivos como el trigo, maíz, cereales y papas. La temporada de lluvias se da entre noviembre a marzo.

Puede considerársele como valle a mediana altura; en cuanto a la humedad se le puede considerar como zona semiárida y desde el punto de vista ecológico corresponde a la formación vegetal denominada «Bosque seco montano bajo». La cuenca no es muy amplia, está limitada por los contrafuertes de los Andes, cuyos cerros rodean la localidad y no son muy altos. En estas condiciones de topografía se dan la irradiación, la formación de nubes y lluvias que en conjunto hacen el clima de la provincia de Huamanga.

Chiara, con una altitud mayor (730 msnm) más sobre Canaán y de acuerdo a la clasificación del Dr. Javier Pulgar Vidal, climatológicamente según la altura continua dentro de la zona Quechua, esta zona se caracteriza por poseer muchas quebradas y praderas. El clima es templado con tendencia a frío sobre todo por las tardes y en las madrugadas. Existe una marcada diferencia entre la temperatura a la intemperie y a la sombra, que genera una sensación de frío. La temperatura promedio es de 11 °C, y es el lugar donde puede iniciar las heladas. Los principales cultivos son la papa, habas, arvejas y la avena; son suelos de capa arable semi-superficiales y de pendientes mayores a 5 %, sin embargo son aptas para el desarrollo de la agricultura, forestal y de pastos para el desarrollo pecuario.

a. Temperatura y precipitación.

Los datos climatológicos (Temperatura máxima, mínima y Precipitación promedio mensual), fueron tomados de la Estación Meteorológica de Pampa del Arco, propiedad de la Universidad Nacional San Cristóbal de Huamanga, ubicado a 13º08'00" Latitud Sur y 74º13'00" Longitud Oeste, a una altitud de 2751 msnm. y de la Estación Meteorológica de Chiara, controlada por el Proyecto Especial "Río Cachi", Sub Gerencia de OPEMAN — Unidad hidrológica, ubicado a 13º16'00" de Latitud y 74º12'27" de Longitud, a una altitud de 3400 msnm, comprendidas de Enero — Diciembre 2007 y Enero a Diciembre 2008.

Cuadro 2.3: Promedios de temperatura máxima, mínima y media; precipitación y balance hídrico mensual 2007, Estación Meteorológica de Pampa del Arco. 2 751 msnm.

Año						20	07						TOT41
Meses	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	ост.	NOV.	DIC.	TOTAL
Tº Máxima (°C)	25:50	25.11	23.67	24.31	25.19	25.24	24.21	26.03	24.56	26.51	26.96	25.23	
Tº Mínima (°C)	11.60	10.95	11.55	10.35	7.29	4.65	6.01	6.57	8.33	9.94	9.81	10.42	
Tº Media (°C)	18.55	18.03	17.61	17.33	16.24	14.95	15.11	16.30	16.45	18.23	18.39	17.83	
Precipitación (mm)	71.20	69.60	151.50	38.40	2.50	0.00	6.40	1.00	13.60	37.70	74.00	104.70	570.60
Factor (Fm)	4.96	4.48	4.96	4.80	4.96	4.80	4.96	4.96	4.80	4.96	4.80	4.96	
ETPmensual (mm)	92.01	80.77	87.35	83.18	80.55	71.74	74.95	80.85	78.94	90.40	88.25	88.41	997.38
ETP ajustada (mm)	52.45	46.04	49.79	47.38	45.91	40.89	42.72	46.08	45.00	51.53	50.30	50.39	568.48
Exceso (mm)	18.75	23.56	101.71								23.70	54.31	
Déficit (mm)				8.98	43.41	40.89	36.32	45.08	31.40	13.83			

Factor de corrección (Fc) = 0.57

Temperatura promedio: 17.08 ° C

Cuadro 2.4. Promedios de temperatura máxima, mínima y media; precipitación y balance hídrico mensual 2008, Estación Meteorológica de Pampa del Arco. 2 751 msnm.

Año	2008												
Meses	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	ост.	NOV.	DIC.	TOTAL
Tº Máxima (ºC)	23.19	23.91	23.87	25.31	25.40	24.90	25.20	26.50	26.80	26.30	27.70	25.90	
Tº Mínima (ºC)	11.59	10.63	10.17	8.34	5.60	5.30	4.60	6.60	7.80	10.40	10.40	10.80	
Tº Media (°C)	17.39	17.27	17.02	16.83	15.50	15.10	14.90	16.55	17.30	18.35	19.05	18.35	
Precipitación (mm)	80.70	86.40	113.80	25.50	11.50	4.80	0.00	0.00	39.10	25.00	37.90	76.20	500.90
Factor (Fm)	4.96	4.48	4.96	4.80	4.96	4.80	4.96	4.96	4.80	4.96	4.80	4.96	
ETPmensual (mm)	86.25	77.37	84.42	80.76	76.88	72.48	73.90	82.09	83.04	91.02	91.44	91.02	990.67
ETP ajustada (mm)	52.45	46.04	49.79	47.38	45.91	40.89	42.72	46.08	45.00	51.53	50.30	50.39	568.48
Exceso (mm)	28.25	40.36	64.01									25.81	
Déficit (mm)				21.88	34.41	36.09	42.72	46.08	5.90	26.53	12.40		

Factor de corrección (Fc) = 0.51

Temperatura promedio: 17.0 ° C

Cuadro 2.6. Promedios de temperatura máxima, mínima y media; precipitación y balance hídrico mensual 2008, Estación Meteorológica de Chiara. 3, 400 msnm.

Año		·				20	08						TOTAL
Meses	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	JUL.	AGO.	SET.	ост.	NOV.	DIC.	TOTAL
Tº máxima (ºC)	24.6	21.2	20.2	20.6	20.2	20:6	20.0	20.4	22.5	22.5	22.2	23.2	
Tº mínima (°C)	2.0	2.2	2.8	1.0	0.0	1.4	-1.2	-1.6	0.8	0.2	2.6	3.2	
Tº Media (°C)	13.30	11.70	11.50	10.80	10.10	11.00	9.40	9.40	11.65	11.35	12.40	13.20	
Precipitación (mm)	96.5	93.8	102.0	23.1	18.2	4.2	7.2	9.3	50.6	71.3	100.8	74.6	651.58
Factor (Fm)	4.96	4.48	4.96	4.80	4.96	4.80	4.96	4.96	4.80	4.96	4.80	4.96	
ETPmensual (mm)	65.97	52.42	57.04	51.84	50.10	52.80	46.62	46.62	55.92	56.30	59.52	65.47	660.62
ETP ajustada (mm)	59.19	51.54	54.56	57.21	54.13	45.13	48.86	50.13	54.70	61.38	59.14	59.54	655.51
Exceso (mm)	37.31	42.30	47.44								41.66	15.06	
Déficit (mm)				16.61	40.33	39.63	45.06	35.57	27.30	21.78			

Factor de corrección (Fc) = 0.99

Temperatura promedio: 11.3 ° C

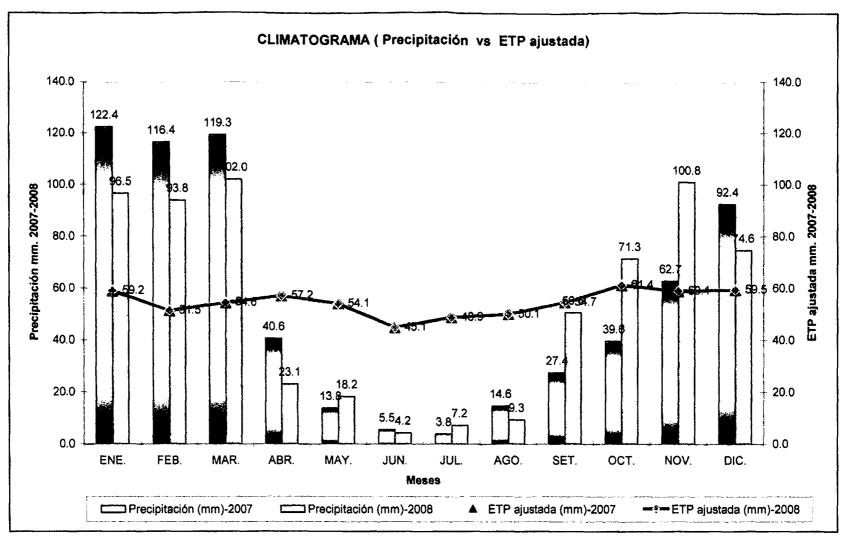


Gráfico 2.2. Climatograma (Pp Vs E.T.P. ajustada), del año 2007 y 2008; Estación Meteorológica de Chiara. 3, 400 msnm.

Durante el periodo de duración del ensayo las condiciones climatológicas fue de la siguiente manera: como se observan en los cuadros (2.3, 2.4 y 2.5, 2.6), las temperaturas y precipitaciones son variables para cada lugar, según las épocas del año, las estaciones, latitud, altitud, radiaciones, nubosidad, lluvia, grado de humedad del suelo, etc.

La temperatura promedio de Canaán se encuentra dentro de los parámetros con 17 °C, que es más favorable para el desarrollo de la fase reproductiva de la alfalfa; mientras que la temperatura de Chiara no es favorable con 11 °C, que en los meses de Mayo a Agosto son mas críticos, que en algunos años demuestra que las posibilidades de las heladas remotas; estas diferencias de temperaturas hizo también que la evapotranspiración se diferencie y que las exigencias de precipitación sea mayor en Canaán.

Para Canaán, en el año 2006 - 2007 durante los meses de Nov. – Marzo respectivamente, el promedio mensual de precipitación fue 97 mm por mes; con 3.2 mm/día, 32 m³/Ha; cantidad que no cubre el consumo promedio de agua por el cultivo, siendo necesario complementar el requerimiento de agua con los riegos de acuerdo a las observaciones visibles de marchites hechas en el campo. En el año 2007 – 2008, en los mismos meses, el promedio mensual de precipitación fue 90 mm/mes, con 3 mm/día, 30 m³/Ha; cantidad que no cubre el requerimiento de agua para el cultivo. Además observamos en los cuadros de climatogramas, que la evapotranspiración es muy superior que la precipitación, esto hizo, que necesariamente se tuvo que complementar el requerimiento de agua con los riegos por efecto de presentar marchitez.

Para Chiara, en el año 2006 - 2007, durante los meses de Nov. – Marzo respectivamente, el promedio mensual de precipitación fue 102.6 mm por mes; con 3.4 mm/día; cantidad de agua que regularmente puede ser cubierto a esta altitud, pero se observa el déficit de agua, que necesariamente también tuvo que ser cubierto el requerimiento de agua con

los riegos programados. A diferencia de Canaán, respecto a la precipitación y evapotranspiración, las condiciones en Chiara son mas favorables.

Cabe mencionar que durante la época de lluvia en la Sierra para la alfalfa de acuerdo al año hidrológico, no son suficientes las precipitaciones mensuales, que por lo general están por debajo de 100 mm/mes y afectado por los veranillos cortos que genera mayor evapotranspiración; que necesariamente el requerimiento de agua debe cubrirse a través de los riegos principalmente después de cada corte.

b. Factores hidrológicos.

Para la producción de forraje y obtener buenos rendimientos, es muy importante considerar una fuente de agua que provee en forma permanente. Dicho esto, para nuestras parcelas experimentales se ha contado con fuentes de agua que tuvieron acceso a canales de riego que condujeron los caudales necesarios y en los momentos oportunos; teniendo así algunos percances para Canaán por derrumbe de cerros que taparon los canales de acceso y que fueron subsanados en su momento.

Como se mencionó anteriormente, acerca de las precipitaciones, que no fue suficiente para el crecimiento y desarrollo del cultivo, fue necesario complementar con los riegos programados en cada lugar con el fin de cubrir la demanda de agua y más que todo en los primeros estadios de su desarrollo y luego de realizar cada corte.

2.5 MÉTODO

Se utilizó una tecnología media, adecuada para el cultivo de forrajes como la alfalfa en condiciones de campo.

2.6 MATERIAL EXPERIMENTAL

Entre los materiales y equipos más utilizados dentro de la producción de forraje y análisis que fueron empleados son:

2.6.1. Materiales y equipos de producción.

- Semillas de Medicago sativa L. de las variedades: Moapa 69, Super Alabama SW8210, SW9720, Alta sierra, Cuf 101, Super Alabama W550, W350 (Variedad sintética) y Ranger.
- ❖ Fertilizante (Roca fosfórica Natural, 20 % P₂O₅)
- ❖ Inoculantes (250 g. de inoculante/20 Kg. de semilla de alfalfa)
- Arena fina (Relación 1:10)
- Estacas.
- Letreros.
- Maquina agrícola
- Rastrillos, Hoces.
- Cuadrante de 1m x 1m
- ❖ Balanza 30 Kg.
- Cinta métrica.
- Materiales de escritorio (Lapiceros, libreta de campo, cámara fotográfica, etc.)

2.6.2 Materiales para determinar materia seca.

- ❖ Bolsas de papel.
- Estufa (INIA)

2.7 FACTORES EN ESTUDIO

Variedades de Alfalfa (T)

Se utilizaron ocho variedades de Alfalfa que fueron adquiridos de Comercial Santiago. Mercado Santa Clara Puesto nº 5 y 6. A. E-mail: comercial santiago5@hotmail.com. Ayacucho – Perú.

T₁ : Alfalfa Moapa 69

T₂ : Alfalfa Super Alabama SW8210

T₃ : Alfalfa Alta sierra

T₄ : Alfalfa W350 (variedad sintética)

T₅ : Alfalfa Ranger

T₆: Alfalfa CUF 101

T₇ : Alfalfa Super Alabama W550

T₈ : Alfalfa Super Alabama SW9720

2.8 CARACTERÍSTICAS DE LAS VARIEDADES

Las características de las ocho variedades en estudio se describen a continuación.

1. *M. sativa* var. Moapa 69 (T1)

Características:

❖ Procedencia : USA

❖ Dormancia : 8

❖ Tolerancia pH : 6.5 - 7.5

❖ Adaptación : 2000 a 3500 msnm.

Uso : Pastoreo, corte.

Duración de la pradera : 7 años.

❖ Nº de cortes : 6 – 8 cortes/año.

❖ % Germinación : 96.00%

2. M. sativa var. Super Alabama SW8210 (T2)

Características: variedad de última generación.

Procedencia : Americana

❖ Dormancia : 8.5

❖ Adaptación : 3500 msnm.

❖ Uso : pastoreo, heno, ensilaje, corte.

❖ Nº de cortes : 8 – 11 cortes/año.

❖ Intervalo de corte : 40 a 50 días.

❖ Duración pradera : 4 a 6 años.

❖ %Germinación : 94.00 %

3. M. sativa var. Alta sierra (T3)

Características:

Procedencia : Perú.

❖ Dormancia : 7

❖ Adaptación : 1000 a 3800 msnm.

Uso : pastoreo, heno, ensilaje, corte.

❖ Nº de cortes : 8 – 10 cortes/año.

❖ Duración pradera : 10 a 15 años.

❖ %Germinación : 90.00 %

4. M. sativa var. W350 (variedad sintética) (T4)

Características: alta resistencia al frío y nieve con alto porcentaje de proteína.

❖ Procedencia : Chile.❖ Dormancia : 3.8

❖ Adaptación : 2500 a 4200 msnm.

Uso : pastoreo, heno, ensilaje, corte.

❖ Nº de cortes : 4 – 5 cortes/año.

❖ Duración pradera : 5 a 8 años.

❖ %Germinación : 92.00 %

5. M. sativa var. Ranger (T5)

Características:

❖ Procedencia : USA

❖ Dormancia : 4.5

❖ Adaptación : 3500 a 4100 msnm.

Uso : pastoreo, corte.

❖ N° de cortes : 4 – 5 cortes/año.

❖ Duración pradera : 5 a 8 años.

❖ %Germinación : 90.00 %

6. *M. sativa* var. CUF 101 (T6)

Características:

❖ Procedencia : USA.

❖ Dormancia : 9

❖ Adaptación : 1000 a 3200 msnm.

Uso : pastoreo, corte.

❖ Nº de cortes : 6 – 10 cortes/año.

❖ Duración pradera : 4 a 6 años.

❖ %Germinación : 92.00 %

7. M. sativa var. Super Alabama W550 (T7)

Características: es una variedad poco difundida al sur del país.

❖ Procedencia : Chile

❖ Dormancia : 8.5

❖ Adaptación : hasta 2800 msnm.

Uso : pastoreo, corte.

❖ Nº de cortes : 6 – 10 cortes/año.

❖ %Germinación : 94.00 %

8. *M. sativa* var. Super Alabama SW9720 (T8)

Características: Es una variedad poca difundida en el país.

Procedencia : no reporta.

❖ Dormancia : 9

❖ %Germinación : 90.00 %

2.9 DESCRIPCIÓN DEL CAMPO EXPERIMENTAL Y DISTRIBUCIÓN DE LOS TRATAMIENTOS.

* Características del campo experimental.

• Bloques

Número de bloques : 3

Distancia entre bloques : 1.5 m

Largo : 55.2 m

Ancho : 8 m

Área de cada bloque : 441.6 m

Parcelas

Número de parcelas por bloque : 8

Largo de cada parcela : 6 m

Ancho de cada parcela : 8 m

Área de cada parcela : 48 m²

• Tamaño experimental

Largo : 55.2 m

Ancho : 27 m

Área total : 1490.4 m²

Área neta : 1152 m²

Área de calles : 338.4 m²

❖ Croquis del campo experimental. Canaán y Chiara.

	BLOQUE I		BLOQUE II		BLOQUE III	-
		1		1.5m	8 m	
	T 7		T4		Т3	6 m
	Canal de		rego /		pasadži)	0.8
	T5		T1		T5	
	T2	CA	Т6		Т8	
55.2 m	T4		Т8	CALLE	Т6	
2 m	Т6	CALLE	Т5	TE	T1	
	Т8		Т3		T4	
	T1		Т7		T2	
	Т3		T2		Т7	
			27 m			

como finalidad ayudar a las plántulas a formar los nódulos en sus raíces que obtienen cantidades más que suficientes de Nitrógeno atmosférico provenientes de la simbiosis. La inoculación fue hecha con Rhizomack específico unas horas antes de realizar la siembra y conservada bajo sombra hasta el momento de la siembra.

e. Siembra.

En Canaán se llevó a cabo la siembra el 17 de diciembre del año 2006; y en la comunidad de Intihuasi – Chiara la siembra fue el 30 de diciembre del mismo año.

La densidad de siembra se calculó en base al poder germinativo (92 % promedio), porcentaje de pureza (100 %), densidad teórica (25 Kg. /Ha); siendo la densidad real de 27 Kg. /Ha promedio y aplicadas en todas las variedades. Esta cantidad fue sembrada previa inoculación y cubiertas con rastrillos a 2 cm. y no excediendo para evitar la asfixia de la semilla.

2.11 LABORES CULTURALES

a. Deshierbo.

Los deshierbos fueron hechos según exigencias de cada terreno; desde el establecimiento hasta realizar el primer corte que paulatinamente fue reduciendo las malezas. Canaán, fue el más infestado con muchas hierbas perennes y anuales, que demandó mucho tiempo y dinero para controlarlo (15-20 peones/Ha). En Intihuasi los deshierbos no fueron tanto como en Canaán, solamente se realizó un solo deshierbo hasta el primer corte de uniformización y luego cuando solo era necesario.

Para los controles fitosanitarios no se realizaron ninguna práctica, fue prevenida solo con los deshierbos oportunos luego de cada corte. Canaán, se realizaron de 8-10 deshierbos y en Chiara se realizaron solo dos deshierbos.

b. Riegos.

Luego de realizar las siembras los riegos solo fueron oportunos, siempre y cuando era necesario, el establecimiento fue apoyado por la presencia de las lluvias durante los meses de Diciembre 2006 a Abril del año 2007. A partir de la quincena de Abril 2007 los riegos fueron de la siguiente manera:

En Canaán, los intervalos de riegos fueron programados cada 10 días; sin embargo la dotación de agua para Canaán era uno a dos días durante la semana y necesariamente tuvimos que amoldarnos a esa rutina; lo cual indica que los riegos se llevaron cada dos semanas (14 días), con 600 – 900 m³/Ha con un tiempo de riego de 5 - 8 horas/Ha; sin embargo, cabe aclarar que los intervalos de riego fue prolongada por la fuerte evapotranspiración en la zona y que a partir de los primeros días de Noviembre del año 2007, fue evaluada durante la época de lluvia hasta la quincena de abril del año 2008 de acuerdo a la precocidad de cada variedad.

En Chiara, en esta zona los riegos no fueron tan exigentes como en Canaán, debido a la mayor precipitación y menor evapotranspiración. Los intervalos programados fue cada 15 a 20 días o según la necesidad de agua por el cultivo. Desde el establecimiento hasta fines de abril del 2007 no fueron necesarios los riegos por que la precipitación mensual fue suficiente; los riegos se iniciaron a partir de la primera semana del mes de mayo 2007 hasta fines de diciembre del mismo año con 500 - 600 m³/Ha, con un tiempo de riego de 4 a 5 horas/Ha y se continuó evaluando durante la época de lluvia. El sistema de riego utilizado en ambos casos fue por gravedad dividido por las melgas con distribución del agua a cada unidad experimental.

c. Cortes.

El corte se realizó utilizando una segadora manual en todas las unidades experimentales, el primer corte en ambas zonas fue el corte de limpieza y de uniformización luego de los 120 días de establecimiento en cada lugar. Los indicadores de corte fueron a 10 % de floración y presencia de rebrotes en la parte basal de la planta, recomiendan realizar el corte en este estado por que indica el alto porcentaje de proteína, carbohidratos y buena palatabilidad para el ganado.

2.12 EVENTOS FENOLÓGICOS EVALUADOS

A. Etapa vegetativa.

1. Porcentaje de germinación (días) y número de plantas germinados/m²

Desde la siembra, se registró los días trascurridos y número de plántulas emergidas del suelo y evaluadas por metro cuadrado al azar. Ver anexo, Cuadro 1.1.

2. Primera hoja simple.

Se determinó los días transcurridos, hasta la aparición de la primera hoja simple, a través de constantes observaciones visuales.

3. Primera hoja trifoliada.

Se registró los días transcurridos, hasta la aparición de la primera hoja trifoliada.

4. Segunda hoja trifoliada.

Se registró los días transcurridos, hasta la aparición de la segunda hoja trifoliada. Así hasta la cuarta, quinta y sexta hoja trifoliada.

5. Alargamiento de las yemas y la elongación de los tallos o talluelos, se registraron a través de las semanas transcurridas, donde se hicieron las mediciones de un número de plantas, estimando las alturas, como respuesta de precocidad en cada variedad.

B. Etapa reproductiva.

- 1. Botones florales, se registró los días transcurridos, luego de cada corte, hasta que el 80 % de las plantas presentaron los primordios florales. Ver anexo, Cuadro 1.2 y 1.3
- 2. Inicio de floración, se registró los días transcurridos luego de cada corte hasta que el 1/10 de las plantas presentaron flores con los pétalos abiertos. Ver anexo, Cuadro 1.2 y 1.3

C. Otros parámetros de producción.

- 1. Número de plantas/m², se registró el número promedio de plantas por metro cuadrado tomadas al azar. Ver anexo, Cuadro 1.4 y 1.5
- Número de tallos por planta, se registró el número de tallos por planta, tomadas al azar, de las plantas más representativas. Ver anexo, Cuadro 1.4 y 1.5
- 3. Altura de planta, se registraron las alturas promedios de cinco plantas tomadas al azar de cada parcela experimental, durante o antes de realizar los cortes, que consiste de la base del cuello de la planta hasta el ápice inferior. Ver anexo, página 107.
- 4. Peso de forraje verde y Materia seca en Kilogramos por parcela.
- Determinación de Forraje verde en kilogramos/parcela; para determinar el rendimiento de Forraje verde los cortes fueron realizados de acuerdo a la precocidad del cultivo, con una estimación de 10 % de floración (estimando el 1/10 con el metro cuadrado al azar); los rendimientos fueron evaluados por cada repetición y luego pesados inmediatamente en mantas con balanzas de 30-50 Kg. de capacidad. Los cortes fueron realizados a 4 cm sobre la corona radicular.
- <u>Determinación de Materia seca en Kilogramos/parcela</u>: este proceso consistió en registrar 01 muestra representativa luego de

cada corte de cada cinco sub – muestras, al momento de recepcionar el forraje en el laboratorio, se sometió a registrar el peso inicial; para luego ser sometido a secamiento en una estufa con una temperatura de 60 °C durante 48 horas, en donde se retiraba la muestra comprobada la uniformidad del secamiento y homogeneidad en los valores de los pesos finales. La estufa generosamente fue facilitado por la Estación Experimental de INIIA.

5. Número de cortes por año, se registraron los números de cortes de cada tratamiento por año, de acuerdo a la precocidad de la alfalfa y la diferencia de altitudes sobre el nivel del mar. Tomando como indicador de corte a 10 % de floración para la estación experimental de Canaán, a excepción de la variedad W350; y para la localidad de Chiara el tamaño del rebrote basal y a 10 % de floración.

2.13 DISEÑO EXPERIMENTAL Y ANÁLISIS ESTADÍSTICO

El modelo estadístico para ambos lugares (Canaán y Chiara) fue el Diseño de Bloque Completo Randomizado (DBCR) con tres bloques o repeticiones y con ocho tratamientos. Para el análisis de interpretación de las diferentes cortes se utilizó el Diseño de Parcelas Divididas correspondiéndole a las <u>variedades</u> de alfalfa la ubicación en <u>parcelas</u> y los diferentes <u>cortes</u> en las <u>sub-parcelas</u>.

Se utilizó además los análisis combinados de las dos localidades, con el rendimiento total de forraje verde y seco obtenidos en los cortes.

MODELO ADITIVO LINEAL (DISEÑO PARCELAS DIVIDIDAS)

A cada observación le corresponde una ecuación lineal de la forma:

$$Y_{ijk} = \mu + \beta_k + \alpha i + \varepsilon(\alpha)_{ik} + \delta_j + \alpha \delta_{(ij)} + \varepsilon_{ijk}$$

Donde:

Y_{iik} = Observación en la unidad experimental

μ = Efecto medio, parámetro

 β_k = Efecto del k ésimo bloque, parámetro

 α_i = Efecto del i-ésimo nivel del factor α , Variedades (parcelas)

 $\mathbb{C}(\alpha)_{ik}$ = Error del i-ésimo nivel del factor α , perteneciente al k ésimo bloque, Parcelas.

 δ_i = Efecto de j-ésimo nivel del factor δ , Cortes (sub-parcelas)

 $\alpha \delta_{(ii)}$ = Efecto de la interacción, Variedades x Cortes

 ϵ_{iik} = Error experimental de la sub parcela

Alcance de los sub-índices:

i = 1, 2, 3,......, (Niveles primer factor, variedades)j = 1, 2, 3,......, (Niveles del segundo factor, cortes)

 $j = 1, 2, 3, \dots, (Niveles del segundo factor, conti$

K = 1, 2, 3,....., (Número de bloques)

CAPITULO III

RESULTADOS Y DISCUSIÓN

La alfalfa se sembró y se evaluó los resultados mostrados en el presente experimento, que es producto del manejo agronómico en dos lugares con diferentes pisos ecológicos de 2750 y 3480 msnm. en ocho variedades, a fin de determinar la mejor adaptación, número de cortes y su producción.

Las unidades experimentales fueron instaladas bajo similares condiciones desde la preparación del terreno, densidad de siembra, etc. Siendo la siembra en Canaán el 17 de Diciembre del año 2006 y el 29 de Diciembre del mismo año en Chiara. El corte de uniformización y limpieza en cada unidad experimental fue el 17 de Abril del año 2007, a los 120 días luego de su instalación donde no se consideraron los rendimientos, por que este corte fue con el fin de uniformización y limpieza de malezas básicamente, tanto en Canaán y Chiara. A partir del corte de uniformización y limpieza se diferenció los diferentes eventos de corte de acuerdo a su madurez fisiológica hasta Abril del año 2008 donde se realizó las últimas evaluaciones.

3.1 PARÁMETROS DE PRECOCIDAD

Los parámetros de precocidad se determinaron en función al número de cortes que expresó cada variedad, considerándose el corte para cada lugar de la siguiente manera:

- a. Cortes en Canaán: en esta zona el indicador de corte fue al 10 % de floración en siete variedades y en caso de la variedad W350 como indicador fue la presencia de rebrotes en la parte basal de la planta. El primer corte de uniformización a todas las unidades experimentales se realizó el 17 de abril del año 2007; a partir de este corte se diferenció y se iban desigualando la precocidad de cada variedad.
- -Variedades precoces considerados para el experimento: Super alabama SW8210, Alta sierra, Super alabama W550 y Super alabama SW9720, luego de 120 días de establecimiento se realizaron ocho cortes/año después del corte de uniformización y limpieza hasta el 29 de Marzo del 2008.
- -<u>Variedades semi-precoces considerados para el experimento:</u> Moapa 69 y Cuf 101, luego de 120 días de establecimiento se realizaron siete cortes/año después del corte de uniformización y limpieza hasta el 23 de Marzo del 2008.
- -Variedades tardías considerados en el experimento: las variedades de W350 y Ranger, luego de 120 días de establecimiento se realizaron cinco cortes/año después del corte de uniformización y limpieza hasta el 13 de Abril del 2008.
- b. <u>Cortes en Chiara</u>: de igual manera el indicador fue al 10 % de floración en siete variedades y en caso de la variedad W350 como indicador fue solo el rebrote por que no presentó floración. El primer corte de uniformización y de limpieza en todas las unidades experimentales se realizó el día 29 de Abril del año 2007, a partir de este corte se diferenció a las variedades precoces y tardías siendo de la siguiente manera:

-Variedades precoces considerados en el experimento: Super alabama SW8210, Alta sierra, Super alabama W550 y Super alabama SW9720, luego de 120 días de establecimiento se realizaron seis cortes/año después del corte de uniformización y limpieza hasta el 02 de Marzo del 2008.

-Variedades semi-precoces consideradas en el experimento: Moapa 69 y Cuf 101, luego de 120 días de establecimiento se realizaron cinco cortes/año después del corte de uniformización y limpieza hasta el 26 de Febrero del 2008.

-Variedades tardías considerados en el experimento: las variedades de W350 y Ranger, luego de 120 días de establecimiento se realizaron cinco cortes/año después del corte de uniformización y limpieza hasta el 26 de Abril del 2008.

En los siguientes cuadros observaremos la variabilidad de cortes de acuerdo a la diferencia de altitudes y variedad.

Cuadro 3.1: Número de cortes en función a la precocidad de cada variedad. Canaán, 2750 msnm. Ayacucho.

Precocidad	Variedad	Nº cortes por año	Intervalo de corte (días)	
	S. alabama W550			
Variedades	S. alabama SW8210	Oaha	40.45	
consideradas como precoces	S. alabama SW9720	Ocho	40-45	
•	Alta sierra			
Variedades semi –	Mopa 69	Ciata	50 55	
precoces	Cuf 101	Siete	50-55	
Variedades tardías	W350	O:	65.75	
	Ranger	Cinco	65-75	

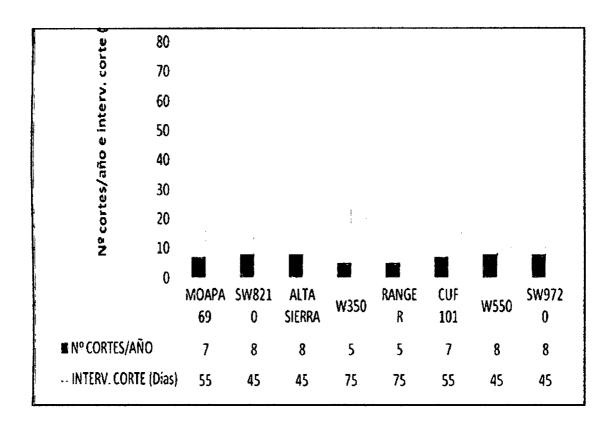


Gráfico 3.1. Número de cortes en función a la precocidad, Canaán.

En el Gráfico 3.1. Donde se muestra la variabilidad del número de corte/año y el intervalo de corte en días. Las variedades con mayor número de corte, 8 cortes/año (Consideradas como precoces) fueron la Super Alabama W550, SW8210, SW9720 y la variedad Alta sierra. Estos resultados tiene relación con los reportes de (Alabama S.A. 2007) donde menciona de 8 a 11 cortes por año en la variedad SW8210 y en la variedad Alta Sierra (Revista comercial Santiago, 2006) menciona 8 a 10 cortes/año. De igual manera (Alabama S.A. 2007), reporta a las variedades Moapa 69 y Cuf 101 con cortes de 6 a 8 por año, resultado muy similar encontrado en nuestra investigación en Canaán.

Cuadro 3.2: Número de cortes en función a la precocidad de cada variedad. Chiara, 3480 msnm. Ayacucho.

PRECOCIDAD	VARIEDAD	Nº CORTES POR AÑO	INTERVALO DE CORTE (Días)	
	S. alabama W550			
Variedades	S. alabama SW8210	Onia.	50.55	
consideradas como precoces	S. alabama SW9720	Seis	50-55	
·	Alta sierra			
Variedades semi –	Mopa 69	Cinna	60.65	
precoces	Cuf 101	Cinco	60-65	
Maria da da a tandia	W350	Custus	05.00	
Variedades tardías	Ranger	Cuatro	85-90	

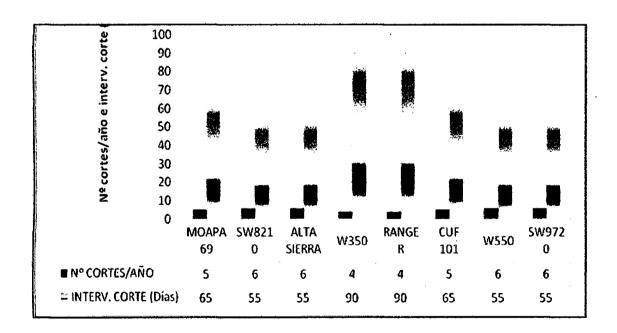


Gráfico 3.2. Número de cortes en función a la precocidad, Chiara.

En el Gráfico 3.2. Como en el caso de Canaán, muestra la variabilidad del número de corte/año y el intervalo de corte en días. Las variedades con mayor número de corte son las mismas variedades, 6 cortes/año (Consideradas como precoces), como la Super Alabama W550, SW8210, SW9720 y la variedad Alta sierra. Estos resultados no guarda relación con

los reportes de (Alabama S.A. 2007) donde menciona de 8 a 11 cortes por año en la variedad SW8210 y en la variedad Alta Sierra (Revista comercial Santiago, 2006) menciona 8 a 10 cortes/año, pero si establece una relación con el reporte de (Alabama S.A. 2007) a cerca de la variedad W350, con 4 cortes/año.

3.2 PARÁMETROS DE RENDIMIENTO EN FORRAJE VERDE Y MATERIA SECA.

El rendimiento de forraje, es indicado por la persistencia de la población de plantas por unidad de superficie para determinar la rentabilidad de un alfalfar. Fue fundamental planificar correctamente el corte, un criterio de corte basado en los principios fisiológicos de la planta permitió a la misma indicar cuándo ha acumulado sus reservas en las coronas radiculares y está lista para ser utilizada sin afectar su producción posterior. Este aviso consiste en el crecimiento y desarrollo de nuevos tallos que emergieron de la corona. Los cortes frecuentes deprimen la producción total de forraje y deterioran el vigor de las plantas, lo que se traduce en alfalfares menos persistentes y bajos rendimientos.

En términos generales se puede ultimar que el rendimiento tiene efecto directo con el manejo una vez implantada la alfalfa. El productor debe asumir un permanente compromiso de manejo adecuado para aumentar la producción y persistencia y obtener más cortes de alta calidad con moderado rendimiento.

Cuadro 3.3: Cuadrados Medios del rendimiento de materia verde y seca en la localidad de Canaán, en las diferentes variedades y cortes. Ayacucho 2008.

F 14-1-15-	CI	CUADRADOS MEDIOS						
F. Variación	GL	Rdto M. Verde Canaán	Rdto M. Seca Canaán					
Bloque	2	90443625 **	4071852 **					
Variedad (V)	7	614109756 **	22589834 **					
Error (V)	14	64264402	2395033					
Corte (C)	7	408081770 **	16263790 **					
Inter (VxC)	41	18395268 **	679905 **					
Error (C)	96	6298759	280772					
Total	167							
C.V.		8.18	8.61					

El cuadro 3.3, nos muestra alta significación estadística para la interacción variedades de alfalfa por corte. Por lo tanto, su estudio esta basada en el análisis de los efectos simples de cada variedad en cada corte. También se pude observar que no todas las variedades tienen un mismo número de corte, algunas variedades tienen 8 cortes, 7 cortes y 5 cortes, según la adaptación de cada variedad el que se muestra en el Gráfico 3.3. En lo referente a los coeficientes de variación estas se muestran como experimentos de buena precisión que nos da una buena seguridad en los resultados mostrados.

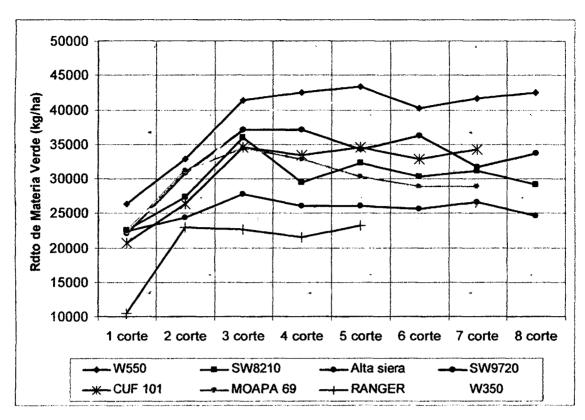


Gráfico 3.3. Rendimiento promedio de materia verde (Kg/Ha) en los diferentes cortes y variedades de alfalfa evaluadas en la localidad de Canaán. 2 750 msnm. 2008

El Gráfico 3.3. Se observa a la variedad **Super Alabama W550** como la de mayor rendimiento de forraje verde en ocho cortes, el rendimiento se incrementa en los primeros cortes hasta estabilizarse en el quinto corte llegando al octavo corte a una producción de **42,000 kg/ha** de forraje verde (310.8 tn FV/Ha/Año); en un segundo lugar esta la alfalfa de la variedad W350, pero solamente tiene 5 cortes llegando a una producción de **41,000 kg/ha** de forraje verde (173 tn FV/Ha/Año). Las variedades Cuf 101, Super Alabama SW 8210, Moapa 69 y S. Alabama SW9720 muestran una producción media. Finalmente las variedades Alta sierra y Ranger muestran una baja adaptación a la zona, la última variedad mencionada solamente a llegado al quinto corte con una producción de 23,000 kg/ha de forraje verde.

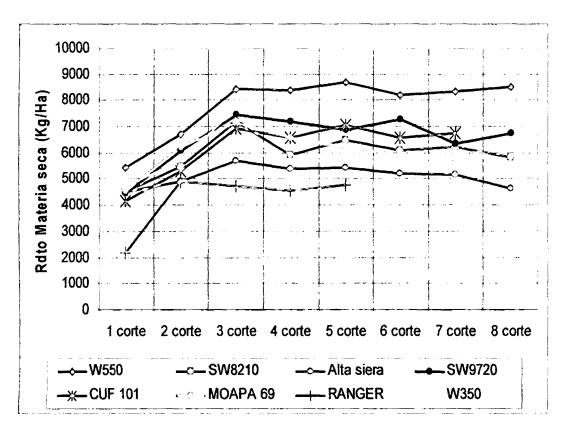


Gráfico 3.4. Rendimiento promedio de materia seca (Kg/Ha) en los diferentes cortes y variedades de alfalfa evaluadas en la localidad de Canaán. 2 750 msnm. 2008.

La producción de materia seca en el Gráfico 3.4, nos muestra una tendencia de incremento de la producción de materia seca hasta el tercer corte para luego estabilizarse su producción hasta los demás cortes, la variedad Super Alabama W550 es la que muestra una mayor productividad superando a las demás variedades mostrando un rendimiento al octavo corte de 8,500 kg/ha de materia seca (62.5 tn MS/Ha/Año), en segundo lugar se observa la variedad W350 con (34 tn MS/Ha/Año) solo con 5 cortes/año. De igual manera se observa en el gráfico 3.4 a las diferentes variedades con los rendimientos siguientes: SW9720 (52 tn MS/Ha/Año), SW8210 (47.6 tn MS/Ha/Año), Alta sierra (40.8 tn MS/Ha/Año) con 8 cortes/año; Cuf 101 (43 tn MS/Ha/Año), Moapa 69 (42 tn MS/Ha/Año) con 7 cortes/año y Ranger (21 tn MS/Ha/Año) con 5 cortes/año.

De acuerdo al reporte de Dammer B. (2004), en condiciones similares de Canaán en Cananvalle (2784 msnm) la variedad de mayor producción total de alfalfa, sumatoria de Materia Seca/Ha de tres cortes, fue la Cuf 101 con 6,234.04 Kg/MS/Ha, la siguiente fue la Moapa 69 con 5,879.50 kg MS/Ha y seguido en último lugar la SW-8210 con 4,637.82 Kg/MS/Ha, resultados muy inferiores a nuestro trabajo de investigación en Canaán.

Cuadro 3.4: Cuadrados Medios del rendimiento de materia verde y seca en la localidad de Chiara, en las diferentes variedades y cortes. Ayacucho 2008

r Variation		CUADRADOS MEDIOS						
F. Variación	GL	Rdto M. Verde Chiara	Rdto M. Seca Chiara					
Bloque	2	21273109 **	946965 **					
Variedad (V)	7	99222186 **	4485127 **					
Error (V)	14	5158492	205269					
Corte (C)	7	259157907 **	11208005 **					
Inter (VxC)	41	4772669 **	215411 **					
Error (C)	96	1482505	74130					
Total	167							
C.V.		5.01	5.32					

La evaluación de la producción de alfalfa en la localidad de Chiara merece una apreciación más detallada, en el Cuadro 3.4 de los Cuadrados Medios se observa alta significación estadística para la interacción de las variedades en los diferentes cortes de producción, tanto en forraje verde y materia seca.

La producción de Materia verde y Materia seca se diferenciaron en cada variedad y por el número de cortes que presentó por año.

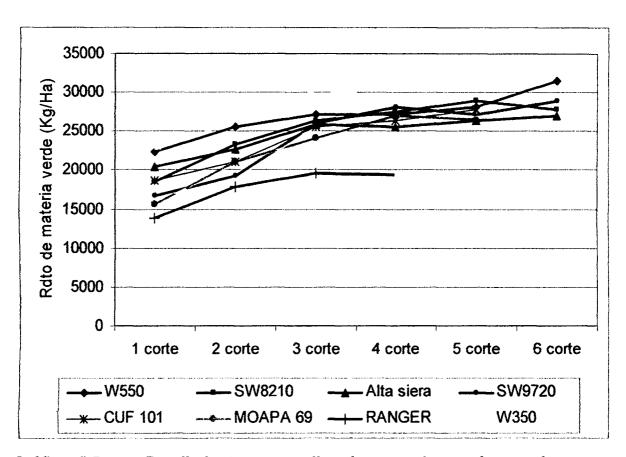


Gráfico 3.5. Rendimiento promedio de materia verde en los diferentes cortes y variedades de alfalfa evaluadas en la localidad de Chiara. 3 480 msnm 2008

En el Gráfico 3.5, se observa a la variedad W350 como la de mayor producción, pero solamente tiene 4 cortes (79 tn/FV/Ha/Año).

A diferencia de las variedades S. Alabama W550 (161.5 tn/FV/Ha/Año), S. Alabama SW8210 (152 tn/FV/Ha/Año), S. Alabama SW9720 (146 tn/FV/Ha/Año) y Alta sierra (147.6 tn/FV/Ha/Año), que tienen 6 cortes/año y como de producción intermedia con 5 cortes a las variedades CUF 101 y Moapa 69. En general en la localidad de Chiara alcanzan rendimientos por debajo de los obtenidos en la localidad de Canaán. La variedad S. Alabama W550, alcanzó una producción de 32,000 kg/ha de forraje verde al sexto corte demostrando ser la más rendidora en este aspecto y la variedad de baja producción en ambos lugares fue la Ranger.

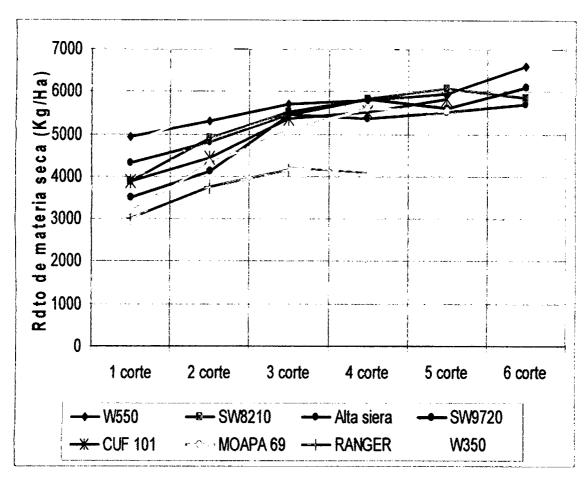


Gráfico 3.6. Rendimiento promedio de materia seca (Kg/Ha) en los diferentes cortes y variedades de alfalfa evaluadas en la localidad de Chiara 3 480 msnm 2008.

La producción de materia seca en el Gráfico 3.6, se muestra que sigue la misma tendencia de la producción de forraje verde, es decir que la producción se incrementa en los cortes sucesivos siendo mayor en los primeros cortes. Siendo la variedad Super Alabama W550 como la de mayor producción en Materia seca con 6,650 Kg MS/Ha al sexto corte, con un total de (34 tn MS/Ha/Año).

Para las discusiones con otros autores lamentablemente no pudimos encontrar reportes de investigación a condiciones similares y probablemente esto se deba a que algunas variedades sean nuevas.

3.3 ANÁLISIS DEL COMBINADO DE LAS DOS LOCALIDADES EN EL RENDIMIENTO TOTAL EN FORRAJE VERDE Y SECO.

Cuadro 3.5: Cuadrados Medios del combinado de las dos localidades en el rendimiento total de materia verde y seca. Ayacucho 2008

F. Variación	CI	CUADRADOS MEDIOS						
r. variacion	GL	Rdto Materia Verde	Rdto Materia Seca					
Localidades (L)	1	104042510838 **	3684158199 **					
Bloques (L)	4	369735461 ns	16620647 ns					
Variedades (V)	7	14604844286 **	598214383 **					
Inter (VxL)	7	1512993765 **	54665226 **					
Error (C)	28	238993753	9013835					
Total	47							
C.V.		9.20	8.75					

En el cuadro 3.5, se observa los Cuadrados Medios del combinado de lugares en la producción total de forraje verde y materia seca de alfalfa, en esta se muestra la alta significación estadística en localidades, siendo Canaán el lugar donde las variedades de alfalfa muestran su mayor potencial productivo. Además existe alta significación estadística en variedades, pero el estudio de la interacción viene a ser la de mayor importancia al encontrarse una alta significación estadística en la interacción de localidades en las variedades de alfalfa, esto nos permite el análisis en forma dependiente de las variedades en cada lugar experimental.

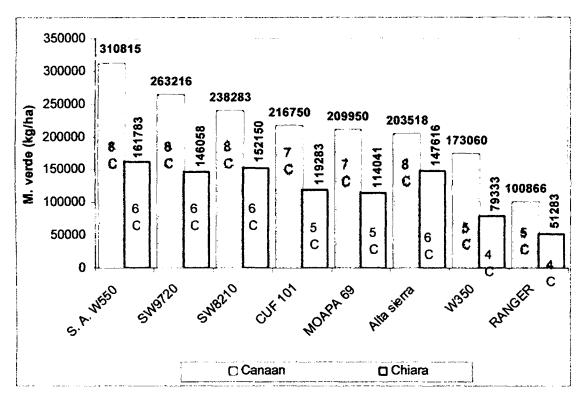


Gráfico 3.7. Rendimiento total promedio de forraje verde en las dos localidades y el número de cortes en cada variedad. Ayacucho 2008.

En el Gráfico 3.7, la variedad Super Alabama W550, se muestra como la más productiva en la localidad de Canaán superando estadísticamente a todas las variedades con una producción de forraje verde de 310 815 kg/ha/año, en un segundo plano están las variedades Super Alabama SW9720, S. Alabama SW 8210 y CUF 101, que llegan a una producción de forraje verde de 263 216, 238 283 y 218 750 kg/ha/año respectivamente.

Referente a la localidad de Chiara las mejores variedades sin diferencia estadística entre ellos son S. Alabama W550, S. Alabama SW9720, S. Alabama SW8210 y Alta sierra, que con 6 cortes cada una tiene una producción total de 161 788, 146 058, 152 150 y 147 616 kg/ha/año respectivamente.

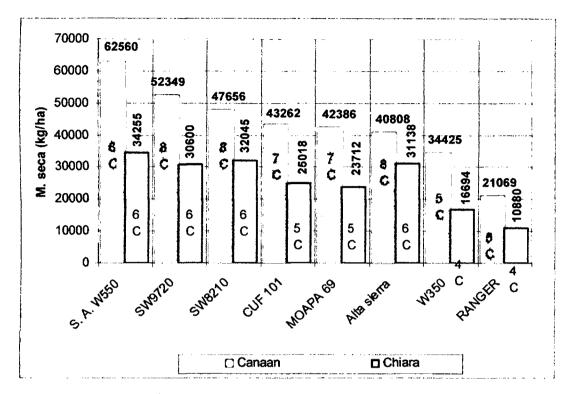


Gráfico 3.8. Rendimiento total promedio de materia seca en las dos localidades y el número de cortes en cada variedad. Ayacucho 2008.

El Gráfico 3.8, nos muestra el rendimiento total promedio de materia seca en la localidad de Canaán y Chiara, estos rendimientos muestran una proporcionalidad con respecto a la producción de forraje verde debido a que tienen un rango del porcentaje de materia seca de 20 a 22 %, además la cosecha se ha efectuado a un 10 % de floración en todas las variedades ha excepción de la W350. Se observa un mayor número de cortes en la localidad de Canaán llegando a un máximo de 8 cortes y un mínimo de 5 cortes a diferencia de la localidad de Chiara donde se llega a un máximo de 6 cortes y un mínimo de 4 cortes. Las variedades que muestran los más bajos rendimientos en forraje verde y materia seca son W350 y Ranger.

CAPITULO IV

CONCLUSIONES Y RECOMENDACIONES

4.1 CONCLUSIONES:

En función a los objetivos planteados, se pueden llegar a las siguientes conclusiones:

- Los estudios realizados permitieron confirmar que el Centro experimental de Canaán, frente a la localidad de Chiara, posee condiciones medio ambientales más favorables para la producción de forrajes.
- 2. En la localidad de Canaán, la variedad Super Alabama W550 se muestra como la alfalfa con mayor rendimiento en forraje verde y materia seca y un mayor número de cortes al año, como una segunda opción están las variedades de: Super Alabama SW9720 y Super Alabama SW8210.

- 3. En la localidad de Chiara los rendimientos son menores a los obtenidos en Canaán, además muestran un menor número de cortes/año. Esto probablemente se vea afectado por la acidez del suelo y las condiciones medio ambientales.
- 4. En el centro experimental de Canaán las variedades de alfalfa incrementan su producción hasta el tercer corte para luego estabilizarse en su producción en forraje verde y materia seca, esto nos indica la adaptación de estos genotipos a los 9 meses.
- 5. En la localidad de Chiara las variedades de alfalfa incrementan su producción hasta el cuarto corte que ocurre a los 12 meses, para luego estabilizarse en su producción a excepción de la variedad Super Alabama W550 y Super Alabama SW9720, que todavía incrementan su producción en forraje verde y materia seca.
- 6. La mayor producción total de forraje verde y materia seca se obtiene en la localidad de Canaán con la variedad Super Alabama W550, alcanzando una producción de 310 815 Kg FV/Ha/año y 62 560 kg MS/ha/año respectivamente.
- 7. En la localidad de Chiara Las variedades Super Alabama W550, Super Alabama SW9720, Super Alabama SW8210 y Alta sierra, con 6 corte cada uno acumulan un total de producción de forraje verde de 161 788, 146 058, 152 150 y 147 616 kg/ha respectivamente.

4.2 RECOMENDACIONES:

Del presente experimento se recomienda para mejorar la oferta de forraje en las zonas de estudio.

 Para condiciones similares a Canaán, difundir la siembra de la variedad Super Alabama W550 por su precocidad, número de cortes/año y producción de forraje verde y materia seca. Como segunda opción están las variedades Super Alabama SW9720,

- Super Alabama SW8210 y Moapa 69. Considerando las condiciones favorables del medio ambiente y el pH del suelo.
- Recomendar la siembra de las variedades de alfalfa Super Alabama W550, Super Alabama SW9720, Super Alabama SW8210 y Alta sierra, para las condiciones ambientales de la localidad de Chiara.
- 3. Evaluar las variedades sobresalientes con otras variedades lecheras de características similares de la Super Alabama como: Super alabama SW14 y S. alabama SW435 y Super Alabama 8925, que actualmente están en el mercado nacional y local.
- Se debe buscar terrenos profundos, libres de malezas, que cuyas hierbas son perjudiciales en los primeros estadios de las plántulas de la alfalfa.
- Es muy importante realizar los manejos agronómicos adecuados como los deshierbos oportunos, abonamiento de mantenimiento, riego y los cortes en momentos pertinentes de su etapa fenológica.

CAPITULO V

RESUMEN

Teniendo en cuenta la escases en la producción de forraje, se estudiaron las posibilidades de producir forraje bajo condiciones climáticas de los microclimas que presenta el departamento de Ayacucho y la influencia de dos pisos altitudinales (2 750 msnm y 3 480 msnm) de climas distintas sobre la producción de forraje de ocho variedades de alfalfa. Los experimentos se llevaron a cabo en el Centro experimental de Canaán (Distrito San Juan Bautista) y la comunidad de Intihuasi (Distrito de Chiara), departamento de Ayacucho. Las variedades estudiadas fueron: Moapa 69, Super Alabama SW8210, Alta sierra, W350, Ranger, Cuf 101, Super Alabama W550 y Super Alabama SW9720.

El diseño experimental fue, Diseño de Bloque Completo Randomizado (DBCR) con tres bloques y 8 tratamientos. Para el análisis conjunto de los diferentes cortes en cada variedad se utilizó el Diseño de Parcelas Divididas, correspondiéndole a las variedades de alfalfa ubicadas en parcelas y los diferentes cortes en sub-parcelas. Se utilizó además los análisis combinados de las dos zonas, con el rendimiento total de forraje verde y seco obtenidos en los cortes. Los resultados permiten confirmar que la variedad Super Alabama W550, se muestra como la más productiva en el Centro experimental de

Canaán, superando estadísticamente a todas las variedades con una producción de forraje verde de 310 815 kg/ha/año, en un segundo plano están las variedades Super Alabama SW9720, S. Alabama SW 8210 y CUF 101, que llegan a una producción de forraje verde de 263 216, 238 283 y 218 750 kg/ha/año, respectivamente. Referente a la localidad de Chiara las mejores variedades sin diferencia estadística entre ellos son S. Alabama W550, S. Alabama SW9720, S. Alabama SW8210 y Alta sierra, que con 6 cortes cada una tiene una producción total de 161 788, 146 058, 152 150 y 147 616 kg/ha/año, respectivamente.

De acuerdo a los Cuadrados Medios del combinado de lugares en la producción total de forraje verde y materia seca de alfalfa, en esta se muestra la alta significación estadística en localidades, siendo Canaán el lugar donde las variedades de alfalfa muestran su mayor potencial productivo. Además existe alta significación estadística en variedades, pero el estudio de la interacción viene a ser la de mayor importancia al encontrarse una alta significación estadística en la interacción de localidades en las variedades de alfalfa, esto nos permite el análisis en forma dependiente de las variedades en cada localidad.

La siembra en Canaán fue el 17 de diciembre del año 2006 y en Chiara el 29 de diciembre del año 2006; en parcelas de 48 m² (6×8), en melgas, bajo el sistema al voleo con una densidad de 27 Kg/Ha de semilla. Abonamiento, para Canaán la fórmula fue 30-115-5 NPK/Ha; para Chiara la fórmula fue 20-130-3 NPK/Ha y como fertilización de mantenimiento se utilizó la fórmula de 10-60-2 NPK/Ha/Año para ambos casos. La inoculación se hizo directo a la semilla con RIZOMACK, los riegos en Canaán (suelo Franco arcilloso) fue cada 10 días, en Chiara se hizo cada 15 días (Franco arcilloso).

La zona con mejores condiciones climáticas para la producción de forraje es Canaán, mejor temperatura, ausencia de heladas y promete mayor rendimiento y número de cortes por año; mientras Chiara, permitió obtener menor número de corte por año, incluso existe cierto riesgo de heladas primaverales a parte de los invernales.

BIBLIOGRAFÍA CONSULTADA

- DEL POZO, M. 1971. "La Alfalfa". Ediciones Mundi-Prensa Madrid España.
- DEL POZO, M. 1983. "La Alfalfa: Su Cultivo y Aprovechamiento".
 Tercera Edición. Ediciones Mundi-Prensa. Madrid-España.
- 3. DOMINGUEZ, V. A. 1984. "Tratado de Fertilización". Primera Edición. Ediciones Mundi-Prensa. Madrid-España.
- DE ALBA, J. 1973. "Alimentación del Ganado en América Latina".
 Segunda Edición. Tercera reimpresión. Editorial. Fournier S.A. Cupilco Universidad México.
- 5. DAVIES, W. 1962. "Practicultura". Editorial Acribia. Zaragoza España.
- DAMMER, B. 2004. Tesis "Adaptación de cuatro variedades de Alfalfa" Medicago sativa en la zona de Cananvalle – Ecuador. Universidad Politécnica Salesiana.
- 7. ESPINOSA, J y MOLINA, E. 1999. "Acidez y Encalado de Suelos" INPOFOS. Oficina Regional para el Norte de Latinoamérica. 42p.
- 8. GONZALES, W. 1964. "Algunas Especies Forrajeras en la Sierra, Descripción, Uso y Manejo". Volumen 16. Editorial Junta de Publicaciones SCIA. Quito Ecuador.
- GONZALES, W. 2002. Manual Práctico. "MANEJO DE PASTURAS Y PASTIZALES". Primara Edición. Diagramación e impresiones Andy C. García León. Lima – Perú.
- 10. HANSON, C. H. 1972. "Ciencia y Tecnología de la Alfalfa". Primera Edición. Tomo I. Editorial Hemisferio Sur. Montevideo Uruguay.
- 11. HUGHES, H. D. 1984. "Forrajes". Novena Edición. Compañía Editorial Continental. S.A. México.
- 12. JUSCAFRESCA, B. 1980. "Forrajes, Fertilización y Valor Nutritivo". Segunda Edición. Editorial Aedos. Barcelona España.

- LASTRA, R. A. 1906. "El Cultivo de la Alfalfa". Primera Edición.
 Biblioteca Rural Argentina. Buenos Aires Argentina.
- LEITH, A. y otros. 1978. "Establecimiento de la Alfalfa y su Manejo".
 Folleto. Convenio Peruano Neozelandés. Ministerio Agricultura y Alimentación. Puno Perú.
- 15. MARTINEZ, P.M. 1945. "La Alfalfa". Primera Edición. Editorial Atlántida. Buenos Aires-Argentina.
- MORRISON, B. 1969. "Alimentos y Alimentación del Ganado". Tomo II.
 Editorial UTEHA. México.
- 17. MORÓN A. 2000. Alfalfa: "Fertilidad de suelos y estado nutricional en sistemas agropecuarios de Uruguay" Informaciones Agronómicas del Cono Sur N° 8. INPOFOS Cono Sur. Acassuso, Buenos Aires, Argentina.
- 18. MOLINA, E. y MELÉNDEZ, G. 2002. "Tabla de interpretación de análisis de suelos". Centro de Investigaciones Agronómicas, Universidad de Costa Rica. Mimeo.
- 19. MUSLERA, P. E. y RATERA, G. C. 1984. "Praderas y Forrajes". Primera Edición. Ediciones Mundi-Prensa. Madrid España.
- 20. NERY SANTILLANA V. Responsable del laboratorio de Rhizobiologia. Programa de pastos y ganadería. Universidad Nacional de San Cristóbal de Huamanga. Ayacucho – Perú.
- 21. RUIZ, C. 1972. "Algunas Informaciones Agropecuarias de Suiza y Recomendaciones para el Proyecto Ayacucho". Departamento de Agronomía y Zootecnia. Programa de Pastos. Ayacucho Perú.
- 22. SÁNCHEZ, R. 2004. Cultivo y Producción de "Pastos y Forrajes" Ediciones RIPALME, Lima Perú.
- 23. TAPIA, M. 1974. "Curso de Cultivo de Especies Forrajeras". Universidad Nacional Técnica del Altiplano. Puno Perú.

Revistas y Manuales Revisadas

- 24. Revista <u>Alabama</u> S.A. 2007. E-mail: <u>alabama1@speedy.com.pe</u>. Av. Javier Prado Este 3025 San Borja, Lima Perú.
- 25. Revista Comercial Santiago. Mercado Santa Clara Puesto nº 5 y 6. A. E-mail: comercial santiago5@hotmail.com. Ayacucho Perú
- 26. RED de Cáritas del Perú, 2003. "Cultivo y Manejo de la Alfalfa en Puno". Curso realizado en Ayacucho Perú.
- 27. RED Cáritas del Perú, 2008. "Manual de producción de Alfalfa en zonas Altoandinas" Perú.

Páginas Web Revisadas

- 28. www. infoagro.com. 2007.
- 29. www.semilleriamanrique.com. 2007
- 30. www.alabama.com. 2007.

ANEXOS

Cuadro 1.1: Evaluación del porcentaje de Germinación en laboratorio y campo. Canaán 2 750 m.s.n.m.

	Germ	. lab.	Germ.	campo	Nº plántulas
Variedad en estudio	% G	Días	% G	Días	germ. (m²), 04 repeticiones
T1: MOAPA 69	96	4	63	6	628
T2: SUPER ALABAMA SW8210	94	4	36	6	360
T3: ALTA SIERRA	90	4	79	6	787
T4: W350 (Alfalfa sintética)	92	4	50	7	501
T5: RANGER	90	4	67	6	674
T6: CUF-101	92	4	58	7	575
T7: SUPER ALABAMA W550	94	4	60	6	596
T8 :SUPER ALABAMA SW 9720	90	4	38	6	380
	x = 92		x = 56.4		x = 563

Comparando el porcentaje de germinación, laboratorio y el campo, varía en un 35 % de germinación; en laboratorio, con un porcentaje de germinación más alto es la variedad Moapa 69, seguido por, Super Alabama SW8210 y Super Alabama W550. En campo, el que tuvo mayor porcentaje de germinación fue la variedad Alta sierra, seguido por las variedades de: Ranger, Moapa 69 y Super Alabama W550.

d. Primera hoja simple.

Al sexto día después de la siembra, se presentaron las primeras hojas simples en todas las variedades, no hubo diferencias.

e. Primera hoja trifoliada.

Al séptimo día después de la siembra, se presentaron las primeras hojas trifoliadas, no hubo diferencias.

f. Segunda hoja trifoliada.

Al octavo día luego de la siembra, se presentó la segunda hoja trifoliada en forma genérica. Es decir en todas las variedades.

g. Tercera hoja trifoliada.

Al décimo día luego de la siembra, se presentó la tercera hoja trifoliada, también en forma general.

h. Cuarta, quinta y séptima hoja trifoliada.

A partir del doceavo día luego de la siembra, se presentó la hoja trifoliada cuarta y quinta; luego de los dieciocho días se presentaron desde la séptima hoja trifoliada para adelante. Estas evaluaciones, desde la hoja simple hasta séptima hoja trifoliada, solo fueron evaluadas en Canaán.

1.2. Etapa reproductiva.

En consecuencia, el momento óptimo durante los cortes de la alfalfa se determinó por el estado de madurez del cultivo, más que por la frecuencia de corte en todas las variedades. Este manejo **fisiológico** fue el factor de mayor consideración, que afectó el vigor, productividad y persistencia de la alfalfa. Es necesario recorrer el cultivo periódicamente para observar el inicio del rebrote basal o el inicio de la floración, ya que estos parámetros variaron con las variedades y las condiciones ambientales prevalecientes durante el período de crecimiento.

El desarrollo del rebrote basal ayudó a identificar el momento adecuado del corte, principalmente en Chiara, en aquellas épocas en que las plantas no florearon.

Por otra parte la aparición de botones florales fue un claro indicador de la madurez del cultivo en plena primavera y verano.

Teniendo en cuenta las variaciones estaciónales en el crecimiento natural de la alfalfa, el mejor criterio para determinar el momento de corte, fue la combinación de estos indicadores.

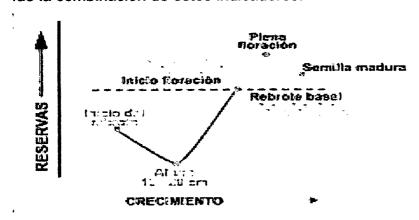


Figura 1.2. Evolución del almacenamiento de reservas en raíz y corona

El momento adecuado de corte correspondió a dos estados específicos de crecimiento: la aparición del rebrote basal y el inicio de la floración.

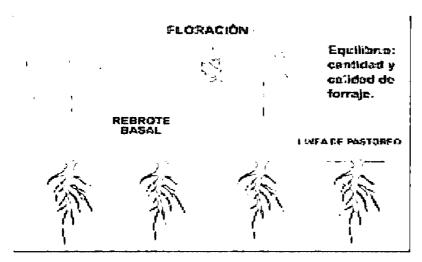


Figura 1.3. Manejo adecuado de los alfalfares durante los cortes.

En la investigación se consideró a 10 % de floración o la aparición del rebrote basal (5-7 cm altura), en donde, se da la relación óptima entre el desarrollo de la alfalfa y un adecuado equilibrio entre el óptimo rendimiento de forraje y la calidad. Además se logró la mejor persistencia de las plantas a través de un adecuado manejo de los niveles de reservas en la raíz.

a. Botones florales.

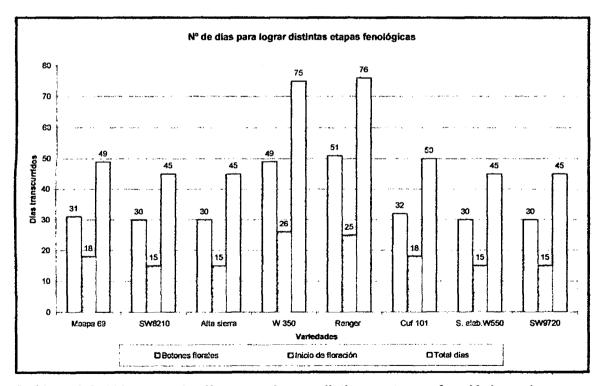
Canaán, de acuerdo a los resultados obtenidos en el cuadro 1.2 y graficado en el gráfico 1.4, diferenciamos a las variedades más precoces manifestando más antes la aparición de los botones florares, siendo los más precoces la variedad Super Alabama SW8210, SW9720, W550, Alta sierra y Moapa 69; y variedades más tardías, Ranger y W350.

Chiara, de acuerdo al cuadro nº 1.3, son las mismas variedades los que tienen menor número de días en la aparición de los botones florales y también las mismas son las tardías, a excepción de la W 350, que no mostró

signos de desarrollo reproductivo, pero si la caída de hojas en la base y rebrotes básales.

b. Inicio de floración.

Canaán, de igual manera los resultados logrados señalamos en el cuadro 1.2 y graficados en el gráfico 1.4; luego de la aparición de los botones florales, observamos que las variedades más precoces manifiestan el inicio de floración a las dos semanas y las variedades tardías a las tres semanas (45 a 75 días); en esta etapa fenológica se realizaron los cortes.


Comparando con la Tesis realizado en Wayllapampa (2, 475 msnm.) por Carhuancho, E. 1978; en la página 71, registra el número de días para lograr la aparición de los botones florales (53 días) e inicio de floración (25 días) con precorte temprano. En Canaán, 2 750 msnm, se logró registrar la aparición de los botones florales (51 días), inicio de floración (25 días), con un total de 76 días, mostrando una variabilidad mínima en ambas localidades, pero si hay una diferencia marcada con la localidad de Chiara.

Chiara, para lograr un mejor entendimiento nos sujetamos al cuadro 1.3, en el cual observamos, que después de tres semanas aparecen los primeros indicios de inicio de floración en las variedades de Super Alabama SW8210, SW9720, W550, Alta sierra, consideradas las más precoces; mientras que la variedad Ranger manifiesta el inicio de floración a los 32 días después de la aparición de los botones florales.

Comparando, Canaán con Chiara, referente a las diferentes etapas fenológicas evaluadas, muestra cierta variabilidad, que esta directamente relacionado por las condiciones del medio ambiente y la diferencia de altitud que existe entre estas dos localidades.

Cuadro 1.2. Número de días para lograr distintas etapas fenológicas de ocho variedades de alfalfa en Canaán – Precorte

Variedad	Botones	Inicio de	Total	Fechas de	evaluación
Varicudo	florales	floración	días	(B.F)	(I.F)
Moapa 69	31	18	49	12/10/2007	30/10/2007
SW8210	30	15	45	25/09/2007	10/10/2007
Alta sierra	30	15	45	25/09/2007	10/10/2007
W 350	49	26	75	04/11/2007	30/11/2007
Ranger	51	25	76	06/11/2007	30/11/2007
Cuf 101	32	18	50	12/10/2007	30/10/2007
S. alab. W550	30	15	45	25/09/2007	10/10/2007
SW9720	30	15	45	25/09/2007	10/10/2007

Gráfico 1.3. Números de días para lograr distintas etapas fenológicas de 8 variedades de alfalfa en Canaán, 2 750 msnm. Precorte.

Cuadro 1.3. Número de días para lograr distintas etapas fenológicas de ocho variedades de alfalfa en Chiara, 3 480 msnm – Precorte.

V	Botones	Inicio de	_ , , , ,	Fechas de	evaluación
Variedad	florales	floración	Total días	(B.F)	(1.F)
Moapa 69	34	28	62	29/11/2007	27/12/2007
SW8210	31	21	52	02/11/2007	22/11/2007
Alta sierra	31	20	51	02/11/2007	22/11/2007
W 350	No ha manif	estado indicios	de floración	26/12/2007	27/01/2008
Ranger	60	32	92	26/12/2007	27/01/2008
Cuf 101	34	28	62	29/11/2007	27/12/2007
S. alab.W550	32	20	52	02/11/2007	22/11/2007
SW9720	32	20	52	02/11/2007	22/11/2007

1.2.1. Otros parámetros:

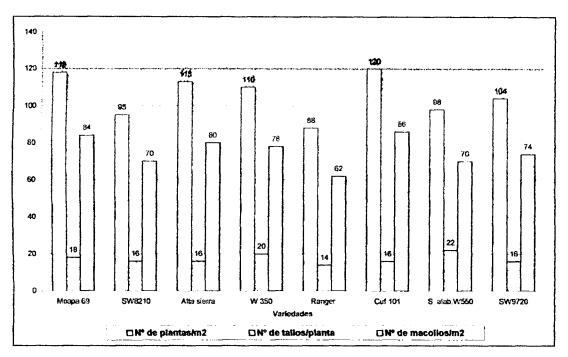
Son parámetros que influyen directamente en el rendimiento de cada variedad.

a. Número de plantas/m²

En Canaán, las variedades de Cuf 101 y Moapa 69, son los que reportaron con mayor número de plantas por metro cuadrado, siendo las que tienen menor número de plantas /m², las variedades de la Ranger, SW8210 y SW9720. (Ver cuadro 1.4), mismo caso en Chiara.

b. Número de tallos por planta y Número de coronas/m².

<u>Canaán</u>; en este caso las variedades rendidoras, S. Alabama W550, muestran mayor número de tallos/planta (16-22) y mayor número de coronas/m² (70); Mientras que en **Chiara**, la misma variedad es la que muestra mayor número de tallos por planta (12-16)


y número de coronas por metro cuadrado (34-35). Para ilustrar mejor nuestros criterios debemos observar las figuras 3.5 y 3.6.

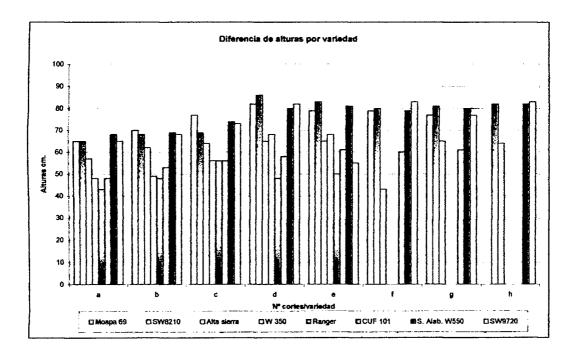
Cuadro 1.4. Promedios de nº de plantas, coronas y nº de tallos por planta y metro cuadrado respectivamente, Canaán 2 750 msnm.

Variedad	Nº de plantas/m²	Nº de tallos/planta	Nº de coronas/m²
Moapa 69	118	16-18	84
SW8210	95	14-16	70
Alta sierra	113	14-16	80
W 350	110	16-20	78
Ranger	88	12-14	62
Cuf 101	120	14-16	86
S. alab.W550	98	16-22	70
SW9720	104	14-16	74

Fechas de evaluaciones:

 N^{o} de plantas/m²: Promedio de 04 evaluaciones (01/07/07, 14/08/07,30/10/07, 24/02/08); N^{o} de tallos/planta: Promedio de 04 evaluaciones (01/07/07, 15/08/07,30/10/07, 10/02/08); N^{o} de coronas/m²: Promedio de 04 evaluaciones (01/07/07, 14/08/07,30/10/07, 24/02/08).

Gráfico 1.4. Diferencias de nº de plantas, coronas y nº de tallos por planta y metro cuadrado respectivamente, por variedad, Canaán 2 750 msnm.


Cuadro 1.5. Promedios de nº de plantas, nº macollos por metro cuadrado y nº de tallos por planta, Chiara 3 480 msnm.

Variedad	Nº de plantas/m²	Nº de tallos/planta	Nº de coronas/m²
Моара 69	92	12-14	41
SW8210	72	10-14	32
M. Alta sierra	90	10-14	36
W350	88	10-14	40
Ranger	70	10-14	32
Cuf - 101	90	10-14	40
S. alab.550	74	12-16	34
SW9720	78	12-16	35

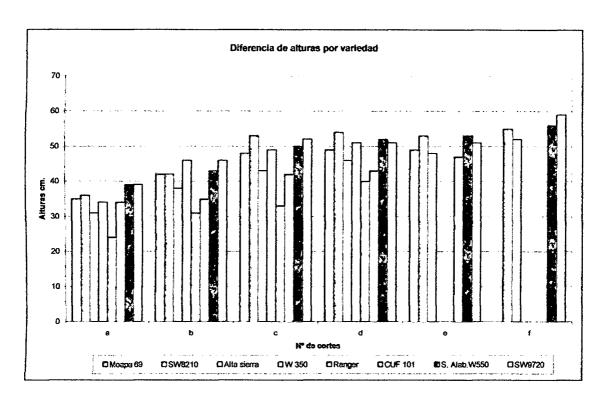


Gráfico 1.5. Diferencias de nº de plantas, coronas y nº de tallos por planta y metro cuadrado respectivamente, por variedad, Chiara 3 480 msnm.

c. Altura de planta.

Gráfico 1.6. Diferencias de promedio de alturas, evaluadas antes y durante el corte, Canaán 2, 750 msnm.

Gráfico 1.7. Diferencias de promedio de alturas, evaluadas antes y durante el corte, Chiara 3, 480 msnm.

1.2.2. Otras características diferenciales.

Cuadro 1.6. Otras características diferenciales.

Variedad	Tallo denso o vacio	Forma de hojas	Color del tallo	Crecimiento
Moapa 69	Vacio	Oblonga	verde marrón	erecto
SW8210	Vacio	Oblonga	verde marrón	erecto
Alta sierra	Vacio	Ovobada	verde limón	erecto, delgados
W 350	semidenso	Ovada	verde oscuro	semierecto
Ranger	Vacio	Ovada	verde	semierecto, ramificado
Cuf - 101	semidenso	Oblonga	verde	erecto
S. alab. W550	Vacio	Oblonga	verde	semierecto, tiende a postrarse
SW9720	Vacio	Oblonga	verde	semierecto, tiende a postrarse

Fecha de evaluación: 03 octubre del 2007, Canaán.

1B₁. Resultados de evaluación de fechas de corte. Canaán, 2750 msnm.

 Luego de 120 días de establecimiento, se realizaron ocho cortes hasta el 29 de Marzo del 2008 en las variedades de: Super alabama SW8210, Alta sierra, Super alabama W550 y Super alabama SW9720,

17 de Abril del 2007 corte de limpieza y uniformización.

• 01 de Junio del 2007 primer corte de evaluación.

❖ 12 de Julio del 2007 segundo corte

❖ 25 de Agosto del 2007 tercer corte

❖ 10 de Octubre del 2007 cuarto corte

24 de Noviembre del 2007 quinto corte

❖ 06 de Enero del 2008 sexto corte

17 de Febrero del 2008 séptimo corte

29 de Marzo del 2008 octavo corte, última evaluación.

 Luego de 120 días de establecimiento, se realizaron siete cortes hasta el 23 de Marzo del 2008 en las variedades de: Moapa 69 y Cuf 101,

17 de Abril del 2007 corte de limpieza y uniformización.

❖ 03 de Junio del 2007 primer corte de evaluación.

❖ 22 de Julio del 2007 segundo corte

❖ 10 de Setiembre del 2007 tercer corte

❖ 30 de Octubre del 2007 cuarto corte

❖ 19 de Diciembre del 2007 quinto corte

❖ 07 de Febrero del 2008 sexto corte

❖ 23 de Marzo del 2008 séptimo corte, última evaluación.

• Luego de 120 días de establecimiento, se realizaron cinco cortes hasta el 13 de Abril del 2008 en las variedades de: **W350** y **Ranger**,

17 de Abril del 2007 corte de limpieza y uniformización.

30 de Junio del 2007 primer corte de evaluación.

❖ 15 de Setiembre del 2007 segundo corte.

❖ 01 de Diciembre del 2007 tercer corte

❖ 10 de Febrero del 2008 cuarto corte

❖ 13 de Abril del 2008 quinto corte, última evaluación.

1B₂. Resultados de evaluación de fechas de corte. Chiara, 3480 msnm.

 Luego de 120 días de establecimiento, se realizaron seis cortes hasta el 02 de Marzo del 2008 en las variedades de: Super alabama SW8210, Alta sierra, Super alabama W550 y Super alabama SW9720.

❖ 29 de Abril del 2007 corte de limpieza y uniformización.

❖ 20 de Junio del 2007 primer corte de evaluación.

❖ 11 de Agosto del 2007 segundo corte

❖ 02 de Octubre del 2007 tercer corte

❖ 22 de Noviembre del 2007 cuarto corte

❖ 12 de Enero del 2008 quinto corte

❖ 02 de Marzo del 2008 sexto corte, última fecha de

evaluación.

 Luego de 120 días de establecimiento, se realizaron cinco cortes hasta el 26 de Febrero del 2008 en las variedades de: Moapa 69 y Cuf 101

29 de Abril del 2007 corte de limpieza y uniformización.

29 de Junio del 2007 primer corte de evaluación.

❖ 26 de Agosto del 2007 segundo corte

27 de Octubre del 2 007 tercer corte

❖ 27 de Diciembre del 2007

cuarto corte

 26 de Febrero del 2008 evaluación. quinto corte, última fecha de

• Luego de 120 días de establecimiento, se realizaron cuatro cortes hasta el 26 de Abril del 2008 en las variedades de: **W350** y **Ranger**.

❖ 29 de Abril del 2007

corte de limpieza y uniformización.

❖ 29 de Julio del 2007

primer corte

❖ 28 de Octubre del 2007

segundo corte

❖ 27 de Enero del 2008

tercer corte

❖ 26 de Abril del 2008

cuarto corte, última fecha d

evaluación.

1C₁. Resultados de evaluación de alturas de planta (cm), Canaán, 2 750 msnm.

1. Alfalfa Variedad Moapa 69

Diamora					Tratam	ientos - Altur	ra (cm)				
Bloques	T1	T1	T1	T1	T1	T1	T1_	T1	T1	T1	T1
<u> </u>	35	50	60	60	68	75	80	82	80	82	78
11	36	46	60	60	62	65	75	80	76	75	76
11	42	58	65	65	65	70	75	83	82	80	78
Promedio	38	51	62	62	65	70	77	82	79	79	77
Fechas de	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte	7º corte	8º corte
evaluación	04/03/2007	25/03/2007	08/04/2007	17/04/2007	03/06/2007	22/07/2007	10/09/2007	30/10/2007	19/12/2007	07/02/2008	23/03/2008

2. Alfalfa Variedad Super Alabama SW8210

Bloques		Tratamientos - Altura (cm)													
Dioquoo	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2	T2			
1	40	50	65	70	70	75	70	89	85	88	82	85			
11	40	52	55	55_	60	65	68	82	80	78	80	81			
I1	42	55	60	65	65	65	70	88	85	75	80	80			
Promedio	41	52	60	63	65	68	69	86	83	80	81	82			
Fecha de	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte	7º corte	8º corte	9º corte			
evaluación	04/03/2007	25/03/2007	08/04/2007	17/04/2007	01/06/2007	12/07/2007	25/08/2007	10/10/2007	24/11/2007	06/01/2008	17/02/2008	29/03/2008			

3. Alfalfa Variedad Alta sierra.

Bloques		Tratamientos - Altura (cm)													
Bioques	Т3	Т3	Т3	Т3	Т3	Т3	Т3	Т3	ТЗ	Т3	Т3	Т3			
1	22	48	50	60	58	58	64	68	70	3	70	68			
11	25	40	65	75	64	68	70	70	68	70	66	69			
ll ll	27	35	45	46	50	60	58	58	58	56	58	55			
Promedio	25	41	53	60	57	62	64	65	65	43	65	64			
Fecha de	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte	7º corte	8º corte	9º corte			
evaluación	04/03/2007	25/03/2007	08/04/2007	17/04/2007	01/06/2007	12/07/2007	25/08/2007	10/10/2007	24/11/2007	06/01/2008	17/02/2008	29/03/2008			

4. Alfalfa Variedad W 350

Bloques	Tratamientos - Altura en (cm)											
2.04000	T4	T4	T4	T4	T4	T4	T4	T4	T4			
1	35	40	45	52	50	48	52	62	62			
II	28	35	40	50	45	48	65	78	75			
Н	30	50	50	68	50	52	52	64	66			
Promedio	31	42	45	57	48	49	56	68	68			
Fecha de evaluación	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte			
i echa de evaluación	04/03/2007	25/03/2007	08/04/2007	17/04/2007	30/06/2007	15/09/2007	01/12/2007	10/02/2008	13/04/2008			

6. Alfalfa Variedad Ranger

Bloques	Tratamientos - Altura (cm)											
Dioqueo	T5	Т5	Т5	T5	T5	T5	T5	Т5	T5			
	20	35	40	60	45	48	50	48	50			
II	20	40	42	50	45	50	52	50	52			
11	18	35	40	45	40	45	50	45	48			
Promedio	19	37	41	52	43	48	51	48	50			
Fecha de evaluación	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte			
	04/03/2007	25/03/2007	08/04/2007	17/04/2007	30/06/2007	15/09/2007	01/12/2007	10/02/2008	13/04/2008			

7. Alfalfa Variedad Cuf 101

Bloques		Tratamientos - Altura (cm)												
Bioquoo	Т6	Т6	T6	Т6										
I	35	45	56	65	55	60	62	68	70	67	69			
11	30	42	44	50	45	52	55	56	60	58	60			
11	25	40	42	45	45	48	50	50	52	55	55			
Promedio	30	42	47	53	48	53	56	58	61 .	60	61			
Fecha de	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte	7º corte	8° corte			
evaluación	04/03/2007	25/03/2007	08/04/2007	17/04/2007	03/06/2007	22/07/2007	10/09/2007	30/10/2007	19/12/2007	07/02/2008	23/03/2008			

8. Alfalfa Variedad Super Alabama W550

Bloques		Tratamientos - Altura (cm)													
Dioquos	T7	T7	<u> </u>	T 7	T 7	T 7	T7	Т7	Т7	T7	Т7	T7			
1	45	52	66	68	- 68	72	80	82	82	80	80	82			
11	40	50	65	68	68	65	68	78	80	79	80	84			
	30	63	65	68	68	70	75	80	82	78	81	80			
Promedio	38	55	65	68	68	69	74	80	81	79	80	82			
Fecha de	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte	7º corte	8º corte	9º corte			
corte	04/03/2007	25/03/2007	08/04/2007	17/04/2007	01/06/2007	12/07/2007	25/08/2007	10/10/2007	24/11/2007	06/01/2008	17/02/2008	29/03/2008			

9. Alfalfa Variedad Super Alabama SW9720

Bloques		Tratamientos - Altura (cm)													
Dioques	Т8	Т8	Т8	Т8	Т8	Т8	Т8	Т8	Т8	Т8	Т8	Ť8			
	40	45	55	58	58	60	75	72	80	84	78_	85			
11	45	55	72	75	70	75	75	90	4	88	76	84			
Ш	35	50	65	70	68	70	70	85	82	78	78	80			
Promedio	40	50	64	_68	65	68	73	82	55	83	77	83			
Fecha de	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte	7º corte	8º corte	9º corte			
evaluación	04/03/2007	25/03/2007	08/04/2007	17/04/2007	01/06/2007	12/07/2007	25/08/2007	10/10/2007	24/11/2007	06/01/2008	17/02/2008	29/03/2008			

1. C₂. Resultados de evaluación de alturas de planta (cm), Chiara 3,480 msnm.

1. Alfalfa Variedad Moapa 69

Plogues				Tratar	nientos - Altur	a (cm)			
Bloques	T1	T1	T1	T1	T1	T1	T1	T1	T1
I	8	12	15	25	40	45	50	55	55
11	5	10	12	20	35	40	48	50	48
11	6	10	12	22	30	42	45	42	44
Promedio	6	11	13	22	35	42	48	49	49
Fechas de evaluación	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte
. 55,,25 22 574,446,611	28/01/2007	25/02/2007	25/03/2007	29/04/2007	29/06/2007	26/08/2007	27/10/2007	27/12/2007	26/02/2008

2. Alfalfa Variedad Super Alabama SW8210

Bloques		Tratamientos - Altura (cm)													
Dioques	T2	T2	T2	T2	T2	T2	T2_	T2	T2	T2					
1	8	10	20	36	40	45	55	56	54_	58					
11	5	9	18	30	35	40	- 52	54	55	55					
11	5	10	15	28	34	40	52	52	50	52					
Promedio	6	10	18	31	36	42	53	54	53	55					
Fecha de	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte	7º corte					
evaluación	28/01/2007	25/02/2007	25/03/2007	29/04/2007	20/06/2007	11/08/2007	02/10/2007	22/11/2007	12/01/2008	02/03/2008					

3. Alfalfa Variedad Alta sierra.

Bloques		Tratamientos - Altura (cm)												
Dioques	Т3	Т3	Т3	Т3	Т3	Т3	T3	Т3	Т3	Т3				
ll	8	12	18	22	30	40	50	48	50	55				
	6	10	16	20	28	35	40	46	48	52				
	8	12	20	25	35	40	40	45	46	50				
Promedio	7	11	18	22	31	38	43	46	48	52				
Fecha de	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte	7º corte				
evaluación	28/01/2007	25/02/2007	25/03/2007	29/04/2007	20/06/2007	11/08/2007	02/10/2007	22/11/2007	12/01/2008	02/03/2008				

4. Alfalfa Variedad W350

Bloques		Tratamientos - Altura en (cm)											
Dioques	T4_	T4	T4	T4	T4	T4	T4	T4					
1	5_	8	15	25	35	50	52	52					
Ш	4	8	14	20	34	48	50	52					
II	4	6	12	20	32	40	45	48					
Promedio	4	77	14	22	34	46	49	51					
Fecha de evaluación	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte					
recha de evaluacion	28/01/2007	25/02/2007	25/03/2007	29/04/2007	29/07/2007	28/10/2007	27/01/2008	26/04/2008					

5. Alfalfa Variedad Ranger

Bloques		Tratamientos - Altura (cm)										
Bioques	T5	T5	T 5	T5	T5	T5	T5	T5				
<u> </u>	5	8	10	15	25	30	32	40				
П	5	8	9	14	22	30	32	38				
П	4	8	10	16	26	34	35	42				
Promedio	55	8	10	15	24	31	33	40				
Fecha de evaluación	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5° corte				
	28/01/2007	25/02/2007	25/03/2007	29/04/2007	29/07/2007	28/10/2007	27/01/2008	26/04/2008				

6. Alfalfa Variedad Cuf 101

Bloques		Tratamientos - Altura (cm)												
Dioquoo	Т6	T6	T6	T6	T6	Т6	Т6	T6	T6					
l	6	10	15	25	35	36	45	45	50					
11	4	88	14	26	32	35	40	40	45					
11 .	6	8	15	22	34	35	42	44	45					
Promedio	5	9	15	24	34	35	42	43	47					
Fecha de evaluación	1ª eval.	2ª eval.	3ª eval.	1º corte_	2º corte	3º corte	4º corte	5º corte	6º corte					
	28/01/2007	25/02/2007	25/03/2007	29/04/2007	29/06/2007	26/08/2007	27/10/2007	27/12/2007	26/02/2008					

7. Alfalfa Variedad Super Alabama W550

Bloques		Tratamientos - Altura (cm)												
Dioques	Т7	Т7	Т7	Т7	Т7	Т7	Т7	Т7	T 7	T 7				
1	8	14	20	30	40	45	52	55	55	60				
11	6	10	18	32	42	44	50	50	52	54				
н	7	12	18	25	35	40	48	52	52	54				
Promedio	7	12	19	29	39	43	50	52	53	56				
Fecha de	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte	7º corte				
corte	28/01/2007	25/02/2007	25/03/2007	29/04/2007	20/06/2007	11/08/2007	02/10/2007	22/11/2007	12/01/2008	02/03/2008				

8. Alfalfa Variedad Super Alabama SW9720.

Bloques		Tratamientos - Altura (cm)												
	Т8	Т8	Т8	Т8	Т8	Т8	Т8	T8	Т8	Т8				
11	8	10	25	32	40	48	52	50	52	60				
II	6	10	20	30	38	46	55	52	52	58				
II	6	10	22	35	40	45	50	50	48	58				
Promedio	7	10	22	32	39	46	52	51	51	59				
Fecha de	1ª eval.	2ª eval.	3ª eval.	1º corte	2º corte	3º corte	4º corte	5º corte	6º corte	7º corte				
evaluación	28/01/2007	25/02/2007	25/03/2007	29/04/2007	20/06/2007	11/08/2007	02/10/2007	22/11/2007	12/01/2008	02/03/2008				

1. D₁. Resultados de salida en el programa SAS de las variables en el experimento de producción de forraje de alfalfa, Canaán 2 750 msnm.

0bs	block	variedad	corte	verde	seca
1	I	moapa 69	1	23800	ADAE
2	II	moapa 69 moapa 69	1	22525	4845 4505
3	III	moapa 69	1	20825	4250
4	I	moapa 69	2	34850	7140
5	II	moapa 69	2	28050	5440
6	III	moapa 69	2	30600	6120
7	I	moapa 69	3	35700	7140
8	ĪĪ	moapa 69	3	27200	5695
9	III	moapa 69	3	43350	8670
10	I	moapa 69	4	34000	6970
11	II	moapa 69	4	26350	5100
12	III	moapa 69	4	38250	7650
13	I	moapa 69	5	31450	6290
14	II	moapa 69	5	25500	5525
15	III	moapa 69	5	34000	6800
16	1	moapa 69	6	32300	6460
17	II	moapa 69	6	24650	5270
18	III	moapa 69	6	29750	5950
19	I	moapa 69	. 7	34000	6800
20	II	moapa 69	7	25500	5100
21	III	moapa 69	7	27200	5440
22	I	SW8210	1	23800	4760
23	II	SW8210	1	22525	4505
24	III	SW8210	1	21250	4250
25	I	SW8210	2	24225	4845
26	II	SW8210	2	29750	5950
27	III	SW8210	2 3	28050 40800	5610
28 29	I II	SW8210 SW8210	3	34000	8160 6800
30	III	SW8210	3	33150	6630
31	I	SW8210	4	31450	6290
32	II	SW8210	4	29750	5950
33	III	SW8210	4	27200	5440
34	I	SW8210	5	35700	7140
35	II	SW8210	5	32300	6460
36	III	SW8210	5	28900	5780
37	I	SW8210	6	34000	6800
38	II	SW8210	6	30600	6120
39	III	SW8210	6	26350	5270
40	I	SW8210	7	34850	6970
41	II	SW8210	7	31450	6290
42	III	SW8210	7	27200	5440
43	I	SW8210	8	33 150	6630
44	II	SW8210	8	28900	5780
45	III	- SW8210	8	25500	5100
46	I	alts	1	21250	4250
47	II	alts	1	25500	5100
48	III	alts	1	20400	4080
49	I	alts	2	22525	450
50	II	alts	2 2	27200	5440
51	III	alts		23375 28900	4675 6290
52	I	alts	3 3		
53 54	II III	alts alts	3	30600 23800	5525 5185
55	I	alts	4	27200	5440
56	II	alts	4	28900	6290
50 57	III	alts	4	22100	4420
58	I	alts	5	30600	6120
59	II ·	alts	5	26350	5780
60	III	alts	5	21250	4420
61	I	alts	6	28730	5695
	-		-		·

62	II	alts	6	27625	5780
63	III	alts	6	20400	4080
64	I	alts	7	30600	5780
	II		7		
65		alts		26350	5270
66	III	alts	7	22950	4361
67	I	alts	8	28900	5440
68	II	alts	8	25500	4845
69	III	alts	8	19550	3655
70	I	w350t	1	21250	4250
71	II	w350t	1	25500	5355
72	III	w350t	ī	23800	4505
73	I	w350t	2	23800	4760
74	II	w35 0 t	2	26350	5270
75	III	w350t	2	35700	7140
76	I	w350t	3	34000	7140
77	II	w350t	3	43180	8160
78	III	w350t	3	39100	7820
79	I	w350t	4	38250	7225
80	II	w350t	4	44200	8840
81	III	w350t	4	40800	8160
82	I	w350t	5	37400	7480
83	II	w350t	5	4505 0	9010
84	III	w350t	5	40800	8160
85	I	ranger	1	10200	2142
86	II	ranger	1	11050	2210
87	III	ranger	1	10200	2142
88	I	_	2	17000	3740
		ranger	2		
89	II	ranger		28050	5891
90	III	ranger	2	23800	4998
91	I	ranger	3	18700	4114
92	·II	ranger	3	26350	5270
93	III	ranger	3	22950	4820
94	I	ranger	4	17850	4106
95	II	ranger	4	25500	5100
96	III		4	21250	4463
		ranger	5	20400	4080
97	I	ranger			
98	II	ranger	5	27200	5712
99	III	ranger	5	22100	4420
100	I	cuf101	1	21250	4250
101	II	cuf101	1	22100	4641
102	III	cuf101	1	18700	3553
103	I	cuf101	2	32300	6460
104	II	cuf101	2	24650	4930
105	III	cuf101	2	22100	4420
	I	cuf101	3	37400	7480
106					
107	II	cuf101	3	35700	7480
108	III	cuf101	3	30600	5814
109	I	cuf101	4	36550	7310
110	II	cuf101	4	34000	6460
111	III	cuf101	4	29750	5950
112	I	cuf101	5	37400	7854
113	II	cuf101	5	34850	6970
114	III	cuf101	5	31450	6290
		cuf101	6	35700	6783
115	I				
116	II	cuf101	6	34000	6800
117	III	cuf101	6	28900	6069
118	I	cuf101	7	37400	7480
119	II	cuf101	7	35700	7140
120	III	cuf101	7	29750	5653
121	I	ala550	1	29750	5950
122	ĪĪ	ala550	1	24650	5177
			1	24650	5177
123	III	ala550			
124	I	ala550	2	39100	7820
125	II	ala550	2	28050	5610
126	III	ala550	2	31450	6605
127	I	ala550	3	45900	9180
128	II	ala550	3	37400	7854
129	III	ala550	3	40800	8160
130	I	ala550	4	46750	9350
			4	39100	7429
131	II	ala550			
132	III	ala550	4	41650	8330

133	I	ala550	5	44200	8840
134	II	ala550	5	42500	8500
135	III	ala550	5	43350	8670
136	I	ala550	6	41650	8330
137	ΙΙ	ala550	6	39950	8390
138	III	ala550	6	39100	7820
139	I	ala550	7	42500	8500
140	II	ala550	7	41650	8330
141	III	ala550	7	40800	8160
142	I	ala550	8	45050	9010
143	II	ala550	8	42500	8500
144	III	ala550	8	39950	7990
145	I	sw9720	1	17850	3570
146	II	sw9720	1	27200	5525
147	III	sw9720	1	21250	4250
148	I	sw9720	2	29750	5950
149	II	sw9720	2	32300	6120
150	III	sw9720	2	30600	6120
151	I	sw9720	3	34000	6800
152	II	sw9720	3	44200	8840
153	III	sw9720	3	33150	6630
154	I	sw9720	4	34850	6630
155	II	sw9720	4	43350	8670
156	III	sw9720	4	33150	6290
157	I	sw9720	5	35700	7140
158	II	sw9720	5	33150	6630
159	III	sw9720	5	34000	6800
160	I	sw9720	6	34000	6800
161	II	sw9720	6	42500	8500
162	III	sw9720	6	32300	6460
163	I	sw9720	7	33150	6962
164	II	sw9720	7	32300	6460
165	III	sw9720	7	29750	5670
166	I	sw9720	8	34850	6970
167	II	sw9720	8	34000	6800
168	III	sw9720	8	32300	6460

Class	Levels	Values
block	3	I II III
variedad	8	alaW550 SW8210 cuf101 alts moapa69 ranger sw9720 w350t
corte	8	1 2 3 4 5 6 7 8

Number of observations 168

Dependent Variable: verde

	Sum of					
Source	DF	Squares	Mean Square	F Value	Pr > F	
block	2	180887250	90443625	14.36	<.0001	
variedad	7	4162578491	594654070	9.25	0.0002	
block(variedad)	14	899701623	64264402	10.20		
corte	7	2856572390	408081770	64.79	<.0001	
variedad*corte	41	754206004	18395268	2.92	<.0001	
Error	96	604680910	6298759			
Corrected Total	167	9594816471				
	R-Square	Coeff Var	Root MSE	verde Mean	,	
	0.936978	8.188068	2509.733	30651.10		
Dependent Variable:	seca					
		Sum of				
Source	DF	Squares	Mean Square	F Value	Pr > F	
block	3	8143705.5	4071852.8	14.50	<.0001	
	2 7			9.43	0.0001	
variedad	/	158128840.6	22589834.4	9.43	0.0002	

block(variedad) corte variedad*corte Error Corrected Total	14 7 41 96 167	33530471.2 113846530.7 27876142.7 26954153.2 372848198.9	2395033.7 16263790.1 679905.9 280772.4	8.53 57.93 2.42	<.0001 0.0002
	R-Square 0.927707	Coeff Var 8.612970	Root MSE 529.8796	seca Mean 6152.113	

Source DF Type III SS Mean Square F Value Pr > F

Level of	Lev	vel of		verde		seca
Variedad	COI	rte	N Mean	Std Dev	Mean	Std Dev
ala550	1	3	26350.0000	2944.48637	5434.66667	446.29176
ala550	2	3	32866.6667	5659.57890	6678.33333	1106.82353
ala550	3	3	41366.6667	4278.23951	8398.00000	694.29965
ala550	4	3	42500.0000	3895.18934	8369.66667	961.11411
ala550	5	3	43350.0000	850.00000	8670.00000	170.00000
ala550	6	3	40233.3333	1298.39645	8180.00000	313.20920
ala550	7	3	41650.0000	850.00000	8330.00000	170.00000
ala550	8	3	42500.0000	2550.00000	8500.00000	510.00000
sw8210	1	3	22525.0000	1275.00000	4505.00000	255.00000
sw8210	2	3	27341.6667	2829.78945	5468.33333	565.95789
sw8210	3	3	35983.3333	4192.95043	7196.66667	
sw8210	4	3	29466.6667			838.59009
sw8210	5	3		2139.11976	5893.33333	427.82395
sw8210	6	3	32300.0000	3400.00000	6460.00000	680.00000
5w8210	7	3	30316.6667	3832.86229	6063.33333	766.57246
	8	3	31166.6667	3832.86229	6233.33333	766.57246
sw8210			29183.3333	3832.86229	5836.66667	766.57246
cuf101 cuf101	1	3	20683.3333	1769.41610	4148.00000	551.12521
	2	3	26350.0000	5308.24830	5270.00000	1061.64966
cuf101	3	3	34566.6667	3538.83220	6924.66667	961.86555
cuf101	4	3	33433.3333	3435.23410	6573.33333	687.04682
cuf101	5	3	34566.6667	2985.10190	7038.00000	784.21426
cuf101	6	3	32866.6667	3538.83220	6550.66667	417.22216
cuf101	7	3	34283.3333	4016.94328	6757.66667	971.65649
alts	1	3	22383.3333	2732.36772	4476.66667	546.47354 alts
2 3		.6667	2490.27274		498.05	
alts	3	3	27766.6667	3538.83220	5666.66667	565.95789
alts	4	3	26066.6667	3538.83220	5383.33333	936.28699
alts	5	3	26066.6667	4681.43497	5440.00000	899.55545
alts	6	3	25585.0000	4524.20435	5185.00000	957.90135
alts	7	3	26633.3333	3832.86229	5137.00000	718.78856
alts	8	3	24650.0000	4732.59971	4646.66667	908.87751
moapa	1	3	22383.3333	1492.55095	4533.33333	298.51019
moapa	2	3	31166.6667	3435.23410	6233.33333	855.64790
moapa	3	3	35416.6667	8078.72721	7168.33333	1487.70237
moapa	4	3	32866.6667	6030.40905	6573.33333	1320.46709
moapa	5	3	30316.6667	4361.86122	6205.00000	641.73593
moapa	6	3	28900.0000	3895.18934	5893.33333	597.02038
moapa	7	3	28900.0000	4497.77723	5780.00000	899.55545
ranger	1	3	10483.3333	490.74773	2164.66667	39.25982
ranger	2	3	22950.0000	5573.82275	4876.33333	1080.64903
ranger	3	3	22666.6667	3832.86229	4734.66667	582.70519
ranger	4	3	21533.3333	3832.86229	4556.33333	503.52987
ranger	5	3	23233.3333	3538.83220	4737.33333	861.03504
sw9720	1	3	22100.0000	4732.59971	4448.33333	992.47586
sw9720	2	3	30883.3333	1298.39645	6063.33333	98.14955
sw9720	3	3	37116.6667	6149.05142	7423.33333	1229.81028
sw9720	4	3	37116.6667	5464.73543	7196.66667	1287.21923
sw9720	5	_3	34283.3333	1298.39645	6856.66667	259.67929
sw9720	6	3	36266.6667	5464.73543	7253.33333	1092.94709
sw9720	7	3	31733.3333	1769.41610	6364.00000	651.32787
sw9720	8	3	33716.6667	1298.39645	6743.33333	259.67929
w350t	1	3	23516.6667	2139.11976	4703.33333	578.58304

w350t	2	3	28616.6667	6265.44758	5723.33333	1253.08952
w350t	3	3	38760.0000	4599.43475	7706.66667	519.35858
w350t	4	3	41083.3333	2985.10190	8075.00000	810.84832
w350t	5	3	41083.3333	3832.86229	8216, 66667	766 57246

1. D₂. Resultados de salida en el programa SAS de las variables en el experimento de producción de forraje de alfalfa, Chiara, 3 480 msnm.

0bs	block	variedad	corte	verde	seco			
1	I	moapa 69	1	17850	3485			
2	ĪI	moapa 69	1	16150	3315			
3	III	moapa 69	1	12750	2720			
4	Ī	moapa 69	2	23800	4760			
5	ĪI	moapa 69	2	20400	4250			
6	III	moapa 69	2	18700	3910			
7	I	moapa 69	3	26350	5525			
8	ĪI	moapa 69	3	24650	5177			
9	III	moapa 69	3	21250	4505			
10	I	moapa 69	4	28900	6035			
11	ĪĪ	moapa 69	4	26350	5440			
12	III	moapa 69	4	25500	5355			
13	I	moapa 69	5	27200	5695			
14	ĪI	moapa 69	5	26775	5610			
15	III	moapa 69	5	25500	5355			
16	I	sw8210	1	19550	4165			
17	ĪĪ	sw8210	1	17000	3570			
18	III	sw8210	1	18700	3910			
19	I	sw8210	2	23800	5015			
20	II	sw8210	2	22100	4675			
21	III	sw8210	2	23800	5015			
22	I	sw8210	3	27200	5695			
23	ĪĪ	sw8210	3	25500	5355			
24	III	sw8210	3	26350	5525			
25	1	sw8210	4	28900	6120			
26	II	sw8210	4	26350	5525			
27	III	sw8210	4	27200	5780			
28	I	sw8210	5	29750	6290			
29	ĪĪ	sw8210	5	28050	5865			
30	III	sw8210	5	28900	6035			
31	I	sw8210	6	28900	6120			
32	ΙΙ	sw8210	6	27200	5780			
33	III	sw8210	6	27200	5695			
34	I	alts	1	19550	4165			
35	II	alts	1	21250	4505			
36	III	alts	1	20400	4250			
37	1	alts	2	22525	4760			
38	II	alts	2	22100	4760			
39	III	alts	2	23375	4930			
40	I	alts	3	27200	5780			
41	II	alts	3	26350	5525			
42	III	alts	3	23800	5015			
43	I	alts	4	25500	5355			
44	II	alts	4	28900	6035			
45	III	alts	4	22100	4675			
46	I	alts	5	27200	5695			
47	II	alts	5	26350	5525			
48	III	alts	5	25500	5355			
49	I	alts	6	28900	6120			
		The SAS	System	02:38 Sa	iturday,	February	21,	1998
Obs	block	variedad	corte	verde	seco			
50	11	alts	6	25500	5355			
51	III	alts	6	26350	5610			
			J	20000	2010			

		117		w9720	5	2677			
		118		w9720	6	3066			
		119 120		w9720	6	2896			
		120	717 7	w9720	6	2726	90 5525		
			*	The SAS	System	02:38	. Saturday,	February 21	, 1998
67									
			₩ L	- CIM D-					
			11	ie GLM Pro	oceaure				
			Class	Level I	nformatio	n			
	Class	Levels	Values						
F	olock	3	I II III						
	JIOCK	3	1 11 111						
V	variedad	8	ala550 s	w8210 cu	F101 alts	moapa	69 ranger	sw9720 w350	t
C	corte	6	1234	5 6					
			M	6 - b - a -		400			
			Number c	f observa	ations	120			
				The SAS S	System	02:38	Saturday.	February 21	. 1998
68					,				,
		**	Th	e GLM Pro	ocedure				
Dependent	Variable	: verde							
				Sum	of				
Source		DF	Sq	uares	Mean Sq	uare	F Value	Pr > F	
block		2	425	46219	2127	3109	14.35	<.0001	
variedad		7		55306	9922		19.23	<.0001	
block(vari	iedad)	14		18892		8492	3.48	0.0003	
corte	,	5		89534	25915		174.81	<.0001	
variedad*c	orte	. 27		62056		2669	3.22	<.0001	
Error		64		80306		2505			
Corrected	Total	119		52313					
	, , , , ,		20200	J 2 3 2 3					
		R-Squar			Root MS	_	erde Mean		
		0.95925	9 5.01	2944	1217.58	2	24288.75		
Dependent	Variable	· seco							
		. 5000							
			S	um of					
Source		DF	Sq	uares	Mean Sq	uare	F Value	Pr > F	
block		2	19020	31.40	94696	5 70	12.77	<.0001	
variedad		7			448512		21.84		
block(vari	edad)	14		48.24	205289		2.77		
corte	,	5			1120800		151.19		
variedad*c	orte	27		21.16	21541		2.91		
Error		64		322.4	741				
Corrected	Total	119							
						_			
		R-Squar			Root MSI		seco Mean		
		0.95383	5 5.32	9633	272.268	>	5108.575		
Level of	Level	of	verde				sec	0	-
variedad	corte				Std I			Mean	Std
Dev									
-1		2	מרכי כס	4300	0645	400	0 00	441 677056	
ala550	1		83.3333	1298.3			0.00 • >>	441.672956	
ala550	2		90.0000	850.6			8.33 5.00	176.941610	
ala550 ala550	3 4		90.0000 90.0000		10000 10000		5.00 0.00	170.000000 510.000000	
ala550	5		50.0000	1700.6 850.6	10000		0. 00 0.00	170.000000	
ala550	6		50.0000	3064.7			1.66	498.054549	
424330	v	J 314	23.0000	2007.7	_0,50	200			

sw8210	1	3	18416.666	7 1298.	39645	3881.66	298.510190)
sw8210	2	3	23233.333	3 981.	49546	4901.66	196.299092	2
sw8210	3	3	26350.000		00000	5525.00	170.000000	
sw8210	4		27483.333		39645	5808.33	298.510190	
sw8210	5		28900.000		00000	6063.33	213.911976	
sw8210	6		27766.666		49546	5865.00	224.888861	
cuf101	1		18700.000		00000	3881.66	213.911976	
cuf101	2		20966.666	7 1298.	39645	4420.00	306.471858	ļ
cuf101	3	3 :	255 00.00 0	0 850.	00000	5355 .0 0	170.000000)
cuf101	4	3	26350.000	0 850.	00000	5525. 0 0	170.000000	,
cuf101	5		27766.666	7 1298.	39645	5836.66	298.510190	,
alts	1		20400.000		00000	4306.66	176.941610	
alts	2		22666.666		19822	4816.66	98.149546	
alts	3		25783.333		41610			
						5440.00	389.518934	
alts	4		25500.000		00000	5355.00	680.000000	
alts	5		26350.000		00000	5525.00	170.000000	,
alts	6		26916.666	7 1769.	41610	5695.00	389.518934	ļ
moapa	1	3 :	15583.333	3 2596.	79289	3173.33	401.694328	ļ
moapa	2	3 :	20966.666	7 2596.	79289	4306.66	427.823951	
moapa	3	3 :	24083.333		79289	5069.00	518.505545	
moapa	4		26916.666		41610	5610.00	370.506410	
moapa	5		26491.666		70805	5553.33	176.941610	
•	1							
ranger			13883.333		39645	3003.33	213.911976	
ranger	2		17850.000		00000	3740.00	170.000000	
ranger	3	-	19550.000		00000	4136.66	427.823951	-
sw9720	1		16716.666	7 490.	74773	3513.33	196.299092	
sw9720	2	3 :	19266.666	7 1769.	41610	4108.33	343.523410	į
sw9720	3	3 2	26066.666	7 981.	49546	5440.00	85.000000	j
sw9720	4	3 2	28050.000	9 850.	99999	5836.66	129.839645	í
sw9720	5		27058.333		37386	5610.00	340.000000	
sw9720	6		28900.000		99999	6091.66	553.044603	
w350t	1		22666.666		79289	4760.00		
							557.382275	
w350t	2		26350.000		00000	5553.33	176.941610	
w350t	3	3 3	30316.666	7 3435.	23410	6380.66	718.304485	Į.
Variedad	N	Mean		Std Dev		Mean	Std Dev	
alaw550	18	26963.88	289	3123.85535	57	09.16667	617.95024	
sw8210	18	25358.33		3781.69935		40.83333	796.97083	
cuf101	15	23856.66		3669.60813		03.66667	785.54682	
alts	18	24602.77		2822.47921		89.72222	584.16726	
moapa 69	15	22808.33		4715.30247		42.46667	1002.50321	
ranger	9	17094.44	144	2768.84954	36	26.66667	559.00022	
sw9720	18	24343.05	556	4865.01470	51	00.00000	1012.05237	
w350t	9	26444.44	144	3974.24871	55	64.66667	840.85581	
Corte	N	Mo		C+d Day		Moon	Ctd Dou	
Corte	N	Me	dil	Std Dev		Mean	Std Dev	
		- ســــــــ						
1	24	18593.		3280.68499		3931.25000	726.996875	
2	24	22100.		3020.84245		4643.12500	623.014782	
3	24	25606.	2500	3290.24621		5380.16667	683.437836	
4	18	26916.	6667	1773.41479		5652.50000	385.956604	
5	18	27436.	1111	1186.26398		5756.38889	291.264008	
6	12	28758.		2480.36227		6063.33333	514.275012	
-								

1E. CUADRO DE EVALUACIÓN SOBRE LOS COSTOS DE PRODUCCIÓN POR AÑO Y POR HECTÁREA. CANAAN Y CHIARA.

COSTOS DE PRODUCCIÓN - ALFALFA POR HECTÁREA, Canaán 2 750 msnm.

1. COSTO DE INSTALACIÓN DE ALFALFA/Ha.

RUDRO	U.M	CANT.	C.U (S/.)	SUB. T (S/.)	C. TOTAL S/.	
A) MANO DE OBRA					580.00	
Preparación de acequias y melgas	Jornal	3	20.00	60.00		
Riego de machaco	Jornal	2	20.00	40.00		
Nivelación camellones	Jornal	15	20.00	300.00		
Dist. Fertilizantes	Jornal	2	20.00	40.00		
Dist. Semillas	Jornal	3	20.00	60.00		
Tapado de semilla	Jornal	4	20.00	80.00		
B) MAQUINARIA						
Arado disco	НМ	6	60.00	360.00		
Rastra, doble pasada	нм	4	60.00	240.00		
C) INSUMOS						
Semilla de alfalfa	Kg.	30	30.00	900.00		
Inoculante	Bolsa	2	10.00	20.00		
Roca Fosfórica	Sacos	10	40.00	400.00		
Guano de Isla	Sacos	6	45.00	270.00		
D) GASTOS OPERATIVOS (5%)						
TOTAL					2909.00	

2. COSTO DE MANTENIMIENTO/HA/AÑO

DESCRIPCIÓN	U.M	CANT.	C.U (S/.)	SUB. T (S/.)	C. TOTAL S/.
A) MANO DE OBRA					5420.00
Riego, cada 10 días	Jornal	26	20.00	520.00	
Deshierbo	Jornal	90	20.00	1800.00	7
Corte manual	Jornal	150	20.00	3000.00	1
Limpieza de acequias y melgas	Jornal	4	20.00	80.00	7
Dist. Fertilizantes	Jornal	1	20.00	20.00	1
B) INSUMOS					250.00
Roca fosfórica	sacos	4	40.00	160.00	
Guano de Isla	sacos	2	45.00	90.00	7
TOTAL					5670.00

Duración

6 años

Depreciación

484.8 por año

COSTO TOTAL POR AÑO/Ha

RUBROS	UNIDAD	COST. PARC.
Costo depreciable	año	484.80
Costo mantenimiento	año	5670.00
COSTO TOTAL DE PRODUCCIÓN	año	6154.80

Rendto promedio al 8º corte 42,000 Kg/Ha (8 Cortes/año); variedad Super Alabama W550, Canaán 2750 msnm.

Rendimiento Kg. FV/Ha/Año

336,000

Costo por Kilogramo de alfalfa

0.018

Soles/Kg. De alfalfa.

RESUMEN DE COSTO POR KG. DE ALFALFA, Según variedad. Canaán 2 750 msnm.

VARIEDAD	Nº CORTES	RENDIMIENTO Kg. FV/Ha/Año	COSTO/Kg. FV ALFALFA S/.
S. Alabama W 550		336,000	0.018
S. Alabama SW 8210	Ocho	232,000	0.027
S. Alabama SW 9720	Ocho	272,000	0.023
Alta sierra		196,000	0.032
Moapa 69	Cinto	196,000	0.028
Cuf 101	Siete	238,000	0.024
Alfalfa W350 (Variedad sintética)	Cinco	205,000	0.022
Ranger		117,500	0.038

COSTOS DE PRODUCCIÓN - ALFALFA POR HECTÁREA, Chiara 3 480 msnm.

1. COSTO DE INSTALACIÓN DE ALFALFA/Ha.

RUDRO	U.M	CANT.	C.U (S/.)	SUB. T (S/.)	C. TOTAL S/.	
A) MANO DE OBRA					580.00	
Preparación de acequias y melgas	Jornal	3	20.00	60.00		
Riego de machaco	Jornal	2	20.00	40.00	7	
Nivelación camellones	Jornal	15	20.00	300.00		
Dist. Fertilizantes	Jornal	2	20.00	40.00	-	
Dist. Semillas	Jornal	3	20.00	60.00]	
Tapado de semilla	Jornal	4	20.00	80.00		
B) MAQUINARIA					600.00	
Arado disco	нм	6	60.00	360.00		
Rastra, doble pasada	НМ	4	60.00	240.00		
C) INSUMOS					1580.00	
Semilla de alfalfa	Kg.	30	30.00	900.00		
Inoculante	Bolsa	2	10.00	20.00		
Roca Fosfórica	Sacos	12	40.00	480.00		
Guano de Isla	Sacos	4	45.00	180.00		
D) TRANSPORTE DE INSUMOS	Kg.	830	0.06	49.80	49.80	
E) GASTOS OPERATIVOS (8%)						
TOTAL					3035.80	

2. COSTO DE MANTENIMIENTO/HA/AÑO

DESCRIPCIÓN	U.M	CANT.	C.U (S/.)	SUB. T (S/.)	C. TOTAL S/.
A) MANO DE OBRA					4200.00
Riego, cada 15 días	Jornal	20	20.00	400.00	
Deshierbo	Jornal	70	20.00	1400.00	1
Corte manual	Jornal	115	20.00	2300.00	
Limpieza de acequias y melgas	Jornal	4	20.00	80.00	
Dist. Fertilizantes	Jornal	1	20.00	20.00	1
B) INSUMOS					250.00
Roca fosfórica	sacos	4	40.00	160.00	
Guano de Isia	sacos	2	45.00	90.00	
TOTAL			· · · · · · · · · · · · · · · · · · ·		4450.00

Duración

6 años

Depreciación

506.0

por año

COSTO TOTAL POR AÑO/Ha

RUBROS	UNIDAD	COST. PARC.
Costo depreciable	año	506.00
Costo mantenimiento	año	4450.00
COSTO TOTAL DE PRODUCCIÓN	año	4956.00

Rendimiento promedio al 6º corte **32,000 Kg/Ha** (6 Cortes/año); variedad Super Alabama W 550, Chiara 3 480 msnm.

Rendimiento Kg. FV/Ha/Año

192,000

Costo por Kilogramo de alfalfa

0.026 Soles/Kg. De alfalfa.

RESUMEN DE COSTO POR KILOGRAMO DE ALFALFA, Según variedad. Chiara 3 480 msnm.

VARIEDAD	Nº CORTES	RENDIMIENTO Kg. FV/Ha/Año	COSTO/Kg. ALFALFA S/.
S. Alabama W 550		192,000	0.026
S. Alabama SW 8210	Caia	165,000	0.030
S. Alabama SW 9720	Seis	168,000	0.029
Alta sierra		159,000	0.032
Moapa 69	Cinna	131,500	0.033
Cuf 101	Cinco	135,000	0.032
Alfalfa W350 (Variedad sintética)	Cuatro	122,000	0.030
Ranger		76,000	0.048

1. F₁. COLECCIÓN DE FOTOS EN LAS DIFERENTES FASES DEL EXPERIMENTO.

FOTO 01: Preparación del terreno (Arado de disco); desterronado y mullido, Canaán 2750 msnm.

FOTO 02: Evaluación de los tratamientos experimental, Canaán a 2 750 msnm.

FOTO 03: Diferencia de alturas de planta de acuerdo al las precocidades de cada variedad, Canaán 2 750 msnm.

FOTO 04: Diferencia de corte de acuerdo a las precocidades, Canaán 2750 msnm.



FOTO 05: Inspección del trabajo de investigación por parte del asesor y jurado de la tesis, Canaán 2 750 msnm.

FOTO 06: Riego por gravedad, después de un veranillo corto, Canaán 2 750 msnm.

FOTO 07: Muestreo aproximado a 10 % de floración para realizar el corte, Canaán, 2, 750 msnm.

FOTO: Angelino Santana.

FOTO 08: Determinación de la altura, realizada al azar y promediadas luego de cuatro-cinco tomas.

FOTO 09: Vista panorámica de la parcela experimental de Chiara - Intihuasi a 3 480 m.s.n.m

FOTO 10: Pesaje del forraje verde, para luego someter a la estufa a 60 °C por 48 horas.

FOTO 11: Muestras sometidas a la estufa para determinar la Materia seca, tomadas de cada parcela experimental.

FOTO: Angelino Santana.

1F2. FOTOS DE VARIEDADES ESTUDIADAS. Canaán y Chiara.

FOTO 12: Variedad Moapa 69 - Tratamiento 01

FOTO: Angelino Santana.

FOTO 13: Variedad Super Alabama SW8210 - Tratamiento 02

FOTO 14: Variedad Alta sierra – Tratamiento 03

FOTO 15: Variedad W350 - Tratamiento 04

FOTO 16: Variedad Ranger – Tratamiento 05

FOTO 17: Variedad CUF-101 - Tratamiento 06

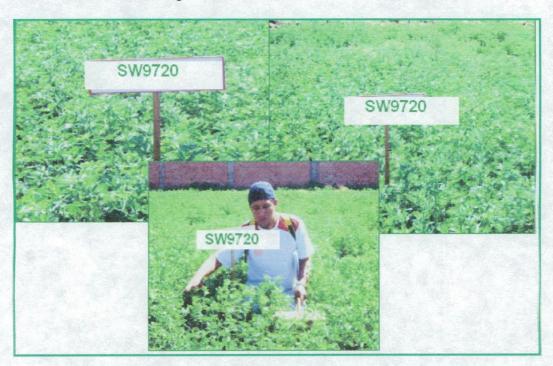



FOTO 18: Variedad Super Alabama W550 - Tratamiento 07

FOTO 19: Variedad Super Alabama SW9720 - Tratamiento 08

