UNIVERSIDAD NACIONAL SAN CRISTOBAL DE HUAMANGA.

FACULTAD DE INGENIERÍA DE MINAS, GEOLOGÍA Y CIVIL.

ESCUELA DE FORMACIÓN PROFESIONAL DE INGENIERÍA DE MINAS.

EVALUACIÓN DE COLUMNAS DE PERFORACION DE EQUIPOS SANDVIK Y ATLAS COPCO EN LAS OPERACIONES DE LA UP. ANDAYCHAGUA VOLCAN S.A.A.

PARA OPTAR TITULO PROFESIONAL DE INGENIERO DE MINAS

Presentado por: Bach. JESUS QUISPE YUCRA.

Ayacucho – Perú 2017.

"EVALUACIÓN DE COLUMNAS DE PERFORACIÓN DE EQUIPOS SANDVIK Y ATLAS COPCO EN LAS OPERACIONES DE LA UP. ANDAYCHAGUA VOLCAN S.A.A."

RECOMENDADO

12 DE OCTUBRE DEL 2017

APROBADO

09 DE NOVIEMBRE DEL 2017

Dr. Ing. Andrés PORTUGAL PAZ

Presidente(e)

Ing. Miguel PRADO ARONÉS

Miembro

Ingº Darwin ORTEGA CÁCERES Miembro

Ing° Johnny H. CCATAMAYO BARRIOS

Secretario Docente

Según el acuerdo constatado en el Acta, levantado el 09 de noviembre del 2017, en la Sustentación de Tesis presentado por el Bachiller en Ingeniería de Minas Sr. Jesús QUISPE YUCRA, con la Tesis Titulado "EVALUACIÓN DE COLUMNAS DE PERFORACIÓN DE EQUIPOS SANDVIK Y ATLAS COPCO EN LAS OPERACIONES DE LA UP. ANDAYCHAGUA VOLCAN S.A.A.", fue calificado con la nota de QUINCE (15) por lo que se da la respectiva APROBACIÓN.

RECOMENDADO

12 DE OCTUBRE DEL 2017

APROBADO

09 DE NOVIEMBRE DEL 2017

Dr. Ing. Andrés PORTUGAL PAZ

Presidente(e)

Ing. Miguel PRADO ARONÉS

Miembro

Ing^o Darwin ORTEGA CÁCERES Miembro

Ing^o Johnny H. CCATAMAYO BARRIOS Secretario Docente

DEDICATORIA

A Dios supremo, quien siempre me guía por la senda del bien, su bendición en el acrecentar de mi vida.

Con eterna gratitud a mis padres, Lorenzo Quispe Palomino y Luisa Yucra Urbano, por darme una formación íntegra incesante y desinteresado apoyo en la conclusión de mis estudios y sus sabios consejos durante mi vida de estudiante.

Mis hermanos: Emiliano,

Mario y Jhon; por brindarme los

mejores momentos.

AGRADECIMIENTO

A la Compañía Minera Volcán S.A.A., por poder realizar el trabajo de investigación en Evaluación de Columnas de Perforación de equipos SANDVIK y ATLAS COPCO en las operaciones de la UP. ANDAYCHAGUA VOLCAN S.A.A., así mismo agradecer al Ing. Wilmer Soca Salvador como al Ing. Fredi Sosa Nuñez, por brindarme el apoyo necesario en la investigación del tema.

A la Universidad Nacional de San Cristóbal de Huamanga alma mater del cual me siento orgulloso de ser egresado y a la plana docente de la Escuela de Formación Profesional de Ingeniería de Minas, quienes supieron brindar lo mejor de ellos a favor de mi profesionalización y por haber contribuido en mi formación profesional.

RESUMEN

La Unidad de Producción Andaychagua está ubicada en la Cordillera Occidental de los andes, el cual concentra una gran cantidad de vetas y mantos epitermales de Ag, Pb, Zn, con cierta cantidad de minerales básicos de baja sulfuración.

Tiene como objetivo principal de evaluar los parametros de perforaion, costos y rendimientos en este presente trabajo de investigacion la Evaluación de Columnas de Perforación de equipos SANDVIK y ATLAS COPCO en las operaciones de la UP. ANDAYCHAGUA VOLCAN S.A.A., de reducir los costos de perforacion, donde se observa la mejora en la calidad y productividad y la innovación en todo campo son los objetivos necesarios para hacer de la Unidad Productiva Andaychagua, una de las minas mas competitivas y seguras de Volcan Comañia Minera.

El primer objetivo del presente trabajo es determinar los parametros de perforacion de los equipos Atlas Copco, que se halla como equipo mas favorable para el uso en los procesos de produccion en los frentes; al igual implica la capacitacion a todo el personal en temas de seguridad.

El análisis de costos unitarios entre los equipos de perforación, se obtiene un ahorrro favorable de 42,126.71 USS cumulados, usando solo los equipos de Atlas Copco, eso de ambos equipos se puede obtener un ahorro de 0.53 y 0.171 USS por cada metro perforado de producción de mineral y desmonte.

La adquisición de quipos según sus parámetros de perforación en la mina fueron factores importantes para la reducción de costos, por perforación y dando mejores eficiencias en los equipos.

La buena elección de equipos de perforación da como resultado, una buena eficiencia en la perforación, rendimiento de aceros y un ahorro en costos de perforación.

INTRODUCCION

Para el cumplimiento de los objetivos establecidos fue necesario evaluar los precios unitarios de los accesorios de perforación para darle mayor rendimiento y garantizar la producción, para ello se evaluó y considero a los equipos atlas Copco con mayores rendimientos y menor costo en la columna de perforación debido a sus parámetros de perforación que son favorables en la perforación de frentes, sostenimientos y Taladros Largos a menor costo, la producción de la mina es de 3500 Tm/Día. (ROCK TOOLS PERU S.A.C – Catalogo Lima 2017-"Manual técnico de Accesorios de Perforación).

Durante años la empresa VOLCAN S.A.A. ha venido trabajando en la Unidad Andaychagua bajo dos sistemas de explotación que son Corte Relleno Descendente.

La finalidad de evaluación de la mejor calidad de accesorios a un menor costo tiene como finalidad mantener el ciclo de minado, por ello se determina el adecuado uso de los accesorios de perforación como sus parámetros de las Columnas de Perforación de equipos SANDVIK y ATLAS COPCO en las operaciones de la UP. ANDAYCHAGUA VOLCAN S.A.A., de tal forma reducir los costos por perforación en la preparación de la mina como en sus explotaciones.

La producción de la Mina Andaychagua se obtiene de los distintos tajeos en la siguiente proporción, de Veta Andaychagua 65% y Zona de Profundización 35%, esta distribución se da para regular y mantener la ley de cabeza del mineral y almacenarla en las canchas de mineral que serán tratadas en la planta concentradora ya que el mineral tratado es de ley 2.5 Oz/Ag.

En la evaluación de las columnas de perforación son evaluados en resultados que se obtienen en los rendimientos de la vida útil de cada acero a un menor costo, debe hacerse desde el punto de vista técnico – económico. De acuerdo a la más moderna tecnología en voladura de rocas, el resultado más importante que debe evaluarse es la FRAGMENTACION (diámetro máximo y mínimo), ya que esta influirá directamente en la producción y productividad de las operaciones mineras unitarias.

El mercado de minería es muy competitivo ya que exige alta preparación de parte de los profesionales que en sí determinarán el desarrollo de la empresa. Así mismo, uno de los temas relevantes es el cambio de parámetros en el uso de equipos de perforación teniendo en cuenta los materiales para reducir costos en la operación unitaria. (ATLAS COPCO – Catalogo Lima 2002 - "Manual técnico de Accesorios de Perforación).

Se resume que al realizar el análisis de costos unitarios entre los equipos de perforación Atlas Copco y Sandick, se puede observar que se tiene un ahorro de 20 008.75 y 22 117. 96 USS mensuales sumando en 42 126. 71 dólares acumulados, proyectándose en un ahorro de 100 000. 00 dólares ahorrados anualmente.

Contenido	
DEDICATORIA	
AGRADECIMIENTO	3
RESUMEN	
INTRODUCCION	
CAPITULO I:	12
GENERALIDADES.	
1.1 PLANTEAMIENTO DEL PROBLEMA	
1.1.1. IDENTIFICACIÓN DEL PROBLEMA	12
1.1.2. UBICACIÓN Y ACCESO	13
1.1.2.1. UBICACIÓN	13
FIGURA N° 1: UBICACIÓN Y ACCESOS A LA MINA.	14
1.1.2.2. VÍAS DE ACCESO	15
TABLA N° 1.1.2: RUTA Y VÍAS DE ACCESO A LA MINA	15
1.2 FORMULACIÓN DEL PROBLEMA	15
1.2.1. PROBLEMA PRINCIPAL	
1.2.2. PROBLEMAS SECUNDARIOS	16
	4.4
1.3 IMPORTANCIA Y JUSTIFICACIÓN	
1.3.1. IMPORTANCIA.	16
1.3.2. JUSTIFICACIÓN.	16
1.4 OBJETIVOS	17
1.4.1. OBJETIVOS GENERALES	
<u>.</u>	
1.4.2. OBJETIVOS ESPECÍFICOS	17
CARÍTUL O U	10
MARCO TEORICO	
2.1 GEOLOGÍA.	
2.4.1. GEOLOGÍA REGIONAL.	10 12
2.4.1. GEOLOGIA REGIONAL.	
2.4.2. GEOLOGÍA LOCAL	20
2.4.3. GEOLOGÍA ESTRUCTURAL.	20
2.4.4. GEOLOGÍA ECONÓMICA	20
2.2 GEOMECÁNICA	21
2.5.1. CONSIDERACIONES GENERALES	22
2.5.1.1. MODELO GEOLÓGICO	22
Z.5.7.7. MIODELU GEULUGICU	<i></i>

2.5.1.2. MODELO GEOMECANICO	22
2.5.2. CLASIFICACIÓN DEL MACIZO ROCOSO	23
2.5.2.1. CLASIFICACIÓN DE RMR BIENAIAWSKI	23
2.5.2.2. CLASIFICACIÓN Q DE BARTON	23
Imagen 1- Tabla GSI de la Unidad Productora Andaychagua	24
FIGURA 2 TABLA RMR DE LA UNIDAD PRODUCTORA ANDAYCHA	AGUA.
26	
2.5.3. MAPEO GEOMECANICO	27
2.5.4. USO Y APLICACIONES EN LA MALLA DE PERFORACIÓN	30
2.3 MINERÍA. 2.8.1. LABORES DE DESARROLLO, PREPARACIÓN Y EXPLOTACIO	31 ÓN. 31
2.8.1.1. DESARROLLO	31
2.8.1.2. PREPARACION	32
2.8.1.3. EXPLOTACION	33
2.8.2. EQUIPOS PRINCIPALES DE PERFORACION	33
2.8.3. MÉTODO DE EXPLOTACIÓN.	33
2.8.3.1. RESUMEN DE LOS PARÁMETROS DE DISEÑO DE VETA	
ANDAYCHAGUA.	36
2.8.4. CICLOS DE OPERACIÓN MINERA.	37
2.8.4.1. Perforación	37
2.8.4.2. Voladura.	37
2.8.4.3. Desate Mecanizado.	38
2.8.4.4. Limpieza.	38
2.8.4.5. Transporte.	38
2.8.4.6. Sostenimiento.	39
2 8 4 7 Relieno.	39

2.8.4.8. Bor	nbeo	39
2.8.5. OPE	RACIONES UNITARIAS	40
2.8.5.1. PEF	RFORACIÓN	40
2.8.5.1.1.	PERFORACIÓN PRIMARIA.	40
2.8.5.1.2.	PERFORACIÓN SECUNDARIA	40
2.8.5.2. VO	_ADURA	41
2.8.5.2.1.	DISEÑO Y DISTRIBUCIÓN DE CARGAS EXPLOSIVAS	42
2.8.5.2.2.	EXPLOSIVOS Y ACCESORIOS EMPLEADOS.	42
2.8.5.3. CAI	RGA Y TRANSPORTE	42
2.8.6. PRO	DUCCIÓN	43
METODOLO	III: DGIA RAMETROS DE PERFORACION – Parametros de Perforacion Usados en la U.P. Andaycha	44 44
	CULO DE BURDEN Y ESPACIAMIENTORA EL CÁLCULO DE BURDEN Y ESPACIAMIENTO	
	EÑO DE MALLA DE PERFORACION	
PLANO 03	- DISEÑO DE MALLA DE PERFORACIÓN 4.5 X 4.5 m	
NEGATIVA		50
3.5 EQI	ENTES Y ACCESORIOS DE VOLADURA. JIPOS DE PERFORACION. 4.1 (A) EQUIPO SD311 SANDVIK Y BOOMER 281 ATLAS	53
3.7 CO 3.8 CA 3.9 ME	SCRIPCION DE LA COLUMNA DE PERFORACION	64 66
CAPITULO EVALUACI	IV: ON DE COLUMNAS DE PERFORACION DE EQUIPOS SAN	70 I DVIK
Y ATLAS C	OPCO	70

4.1 CICLO DE MINADO MECANIZADO. 4.4.1. IMPLEMENTACION DE PARAMETROS DE PERFORACION.	
4.4.2. CALCULO DEL RENDIMIENTO DE ACEROS DE PERFORACION	.74
4.4.3. ANALISIS DE LOS COSTOS METRO PERFORADO POR	
ACCESORIOS DE PERFORACION.	82
4.2 EVALUACION DE MARTILLO DE PERFORADOR DE EQUIPO ATLAS COPCO Y SANDVIK. 4.2.1. EVALUACION DE COLUMNAS DE PERFORACION DE EQUIPOS	
ATLAS COPCO Y SANDVIK.	85
4.2.1.1. Descripcion de la productividad de U.P. ANDAYCHAGUA	.86
CUADRO 23 – Metros perforados acumulados anual, por equipos atlas	
Copco & Sandvik	86
CUADRO 24 – Consumo acumulado de aceros anual	87
4.2.1.2. CONTROL SEMANAL (TABLAS, GRAFICOS, PLANOS)	89
4.2.2. EVALUACION DE RPM DE EQUIPOS DE PERFORACION	.90
4.2.3. CUADRO COMPARATIVO DE PARAMETRO Y FACTORES	.93
4.2.4. RESUMEN DE LOS COSTOS DE PRODUCCION USANDO EQUIPOS	3
ATLAS COPCO Y SANDVIK	94
CUADRO 30: AHORRO EN COSTO DE PERFORACIÓN USANDO EQUIPO	
ATLAS COPCO	97
CAPITULO V	
RESULTADOS Y DISCUSIONES	98
5.1. RESULTADOS	98
5.2. DISCUCIONES DE LOS RESULTADOS	07
CONCLUSIONES 1 RECOMENDACIONES 1 REFERENCIA BIBLIOGRAFÍA 1 ANEXOS 1	11 12

CAPITULO I:

GENERALIDADES.

1.1 PLANTEAMIENTO DEL PROBLEMA

1.1.1. IDENTIFICACIÓN DEL PROBLEMA

El éxito de una industria minera, tanto en el minado como en seguridad y actividades conexas como productividad y utilidad radica plenamente en el conocimiento y manejo adecuado de materiales e insumos, manteniendo el equilibrio con el medio ambiente y tendencia a optimizar los costos operativos y productivos.

La oportuna estabilidad que se le dé al vacío creado en el minado o en las labores preliminares de desarrollo y preparación son también importantes, por lo cual es necesario conocer describir gestionar correctamente los equipos de perforación, voladura, acarreo, transporte, que cierra el ciclo de minado.

En el presente trabajo de investigación se abordará sobre las deficiencias que existen en la etapa de perforación por la escaza importancia que se da en la

administración de los equipos de perforación, fundamentalmente con los quipos

Sandvik y Atlas Copco; demás, por la poca importancia al comportamiento del

macizo rocoso y una capacitación débil hacen que se diluye la productividad y

las responsabilidades, conduciendo todo esto a una inseguridad y relajamiento

del personal en general.

1.1.2. UBICACIÓN Y ACCESO

1.1.2.1. **UBICACIÓN**.

U.P. Andaychagua de la Compañía Volcan S.A.A., se encuentra ubicada en la

sierra central del Perú; políticamente está localizada en el anexo San José de

Andaychagua, en el distrito de Huayllay, provincia de Yauli departamento de

Junín, a 181 Km. Hacia el SE de Lima, sobre el flanco Este de la Cordillera

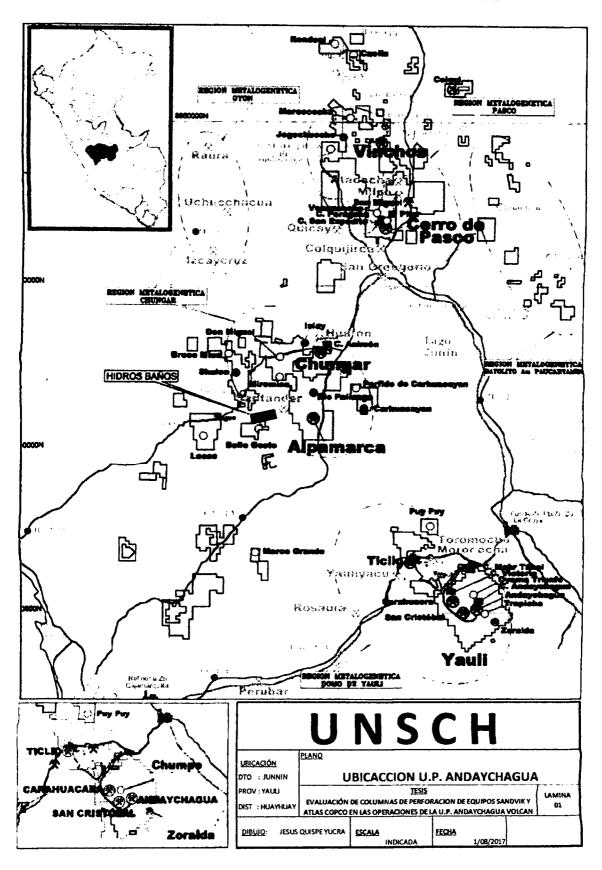
Occidental de los Andes Centrales.

Cuyas coordenadas geográficas son:

Longitud Oeste

: 76° 05' 31"

Latitud Sur


: 11º 43' 52"

Sus coordenadas U.T.M.:

E: 389, 930.000; N: 8' 701, 689.86

pág. 13

FIGURA Nº 1: UBICACIÓN Y ACCESOS A LA MINA.

Fuente: GEOCATMIN – mapeo de labores mineras – 2015.

1.1.2.2. **VÍAS DE ACCESO.**

El acceso a la U.P. Andaychagua se da por las siguientes rutas:

Parte de la oroya y sigue su recorrido por la carretera central hasta el cruce lima – Cut off; luego sigue por la carretera afirmada que pasa por Pashashaca, Marh túnel, Carahuacra, San Cristóbal llegando hasta andaychagua.

Por la carretera central, viajando de Huancayo a la oroya o viceversa. En el trayecto hay una bifurcación hacia huari, donde podemos encontrar una carretera afirmada que pasa por colpa, Huayhuay, llegando a andaychagua

TABLA Nº 1.1.2; RUTA Y VÍAS DE ACCESO A LA MINA.

Ruta	Distancia (Km)	Tiempo (horas)	Tipo de Vía
Ayacucho - Lima – Oroya – Yauli – UEA Andaychagua	780	14 Hrs. Con 40min	Asfaltada y Afirmada
Ayacucho – Huancayo – Oroya - Yauli – U.P. Andaychagua.	418	10 Hrs.	Asfaltada y Afirmada

1.2 FORMULACIÓN DEL PROBLEMA

1.2.1. PROBLEMA PRINCIPAL

¿Cómo influye los costos en las columnas de perforación en equipos **SANDVIK**Y ATLAS COPCO en la inversión de costos de perforación de la U.P.

Andaychagua?

1.2.2. PROBLEMAS SECUNDARIOS

¿Cuánto influye los parámetros de perforación de los equipos (RPM,
 Vigas, Postizos y centralizadores), para aumentar el rendimiento de la

- columna de perforación de los equipos sujetados a la viga de perforación, diseñados en la operación de la U.P. Andaychagua?
- 2. ¿Cómo influye una incorrecta elección de los equipos de perforación en los costos operativos en la perforación de los frentes de la U.P. Andaychagua?
- 3. ¿En qué medida la poca capacitación del personal influye en la inseguridad de los trabajadores de la UP. Andaychagua Volcan SAA?

1.3 IMPORTANCIA Y JUSTIFICACIÓN

1.3.1. IMPORTANCIA.

En la Perforación de frentes de producción de la U.P. Andaychagua el uso de equipos SANDVIK por equipos ATLAS COPCO, nos permite el ahorro de costos en la voladura, mejorando el rendimiento de la producción y productividad así mismo la disminución de costo de producción por metro perforado.

1.3.2. JUSTIFICACIÓN.

Verificar el ahorro de los costos de Perforación al realizar la Evaluación de Columnas de Perforación de equipos SANDVIK y ATLAS COPCO en las operaciones de la UP. ANDAYCHAGUA, como en los costos de Perforación & voladura, a fin de implementar y mejorar la productividad a un menor costo de producción.

1.4 OBJETIVOS

1.4.1. OBJETIVOS GENERALES

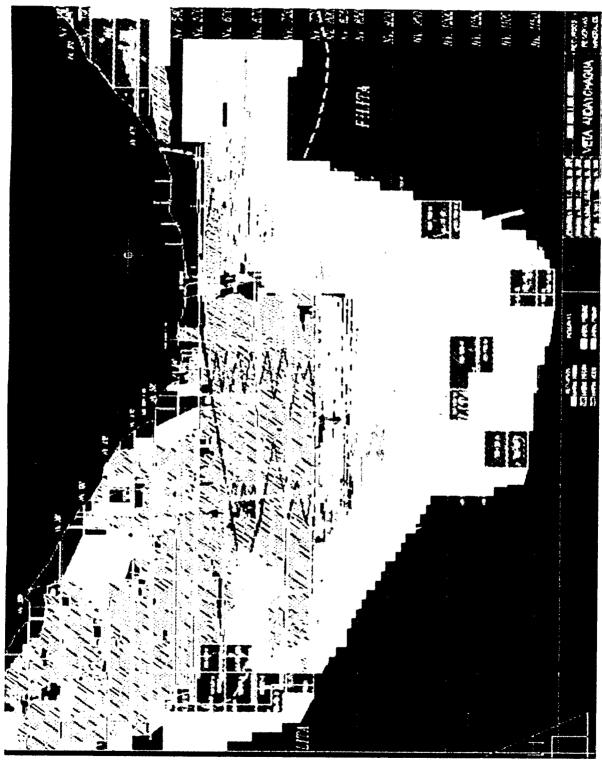
Conocer los parámetros y costos de las columnas de perforación de los equipos Sandvik y Atlas Copco para su mejor evaluación económica,

favorable en los costos de perforación en la U. P. Andaychagua – Volcan S.A.A.

1.4.2. OBJETIVOS ESPECÍFICOS

- Evaluar los parámetros de perforación, costos y rendimiento del de Equipos Atlas Copco como equipos de producción de menor costo.
 - Determinar los parámetros de perforación de los equipos Atlas Copco, como equipo más favorable para el uso en los procesos de producción en los frentes.
 - Capacitar al personal influye positivamente en la seguridad de los trabajadores de la UP. Andaychagua – Volcan SAA?
 - 3. Obtener el Título Profesional de Ingeniero de Minas.

CAPÍTULO II MARCO TEORICO


2.1 GEOLOGÍA.

2.1.1. GEOLOGÍA REGIONAL.

El distrito minero de Andaychagua está localizado en la parte suroeste de una amplia estructura regional de naturaleza domática que abarca íntegramente los distritos de San Cristóbal, Morococha y Carahuacra, conocida como el complejo domal de Yauli que presenta una ventana de formaciones paleozoicas dentro de la faja intracordillerana de formaciones mezosoicas. El paleozoico tiene 2 pisos, el inferior formado por el grupo Excélsior y el superior por el grupo Mitu, el Excélsior está aflorando a lo largo del anticlinal de chumpe en la parte oeste del domo y en el anticlinal de ultimátum hacia el Este, el mitu aflora en la mayor parte del domo. El margen está constituido por las formaciones mezosoicas: grupo Pucará, grupo goyllarisquizga, grupo machay y

formación jumasha. Cuerpos intrusivos y capas extrusivas testifican la actividad ígnea de la zona.

MODELO GEOLÓGICO – VETA ANDAYCHAGUA

Fuente: (Geología de cuadrángulos - Instituto geológico minero metalúrgico).

2.1.2. GEOLOGÍA LOCAL.

La secuencia estratigráfica del distrito de andaychagua muestra rocas sedimentarias y volcánicas, cuya edades varias desde el devónico hasta el cuaternario. Estas rocas han sido intensamente plegadas, constituyendo diversas estructuras entre las cuales se distinguen el anticlinal de chumpe, cuyo eje se orienta en forma paralela a la estructura general de los andes. La mineralización se presenta en vetas rellenando fracturas, las cuales atraviesan casi enteramente las filitas, volcánicos y calizas. Mantos y cuerpos mineralizados se emplazan principalmente en las calizas de la formación pucara.

2.1.3. GEOLOGÍA ESTRUCTURAL.

El macizo paleozoico del domo de Yauli, en el EN de la Hoja de matucana, ha jugado un papel importante en la estratificación como en la tectónica, pues en el área de influencia existen variaciones litológicas y disminución de espesor con relación a las unidades formaciones de triásico – jurásico y cretáceo que se desarrollan al NE y al SO, respectivamente.

La columna estratigráfica del área de estudio, y en general de la región andina, ha sido afectada por movimientos tectónicos ocasionando las discontinuidades.

2.1.4. GEOLOGÍA ECONÓMICA.

La complejidad geológica del distrito ha dado lugar a la formación de una variedad de depósitos minerales que se extienden ampliamente en las rocas calizas y filitas.

Después de la última etapa del plegamiento "Quechua" y la formación de las fracturas de tensión, vino el período de mineralización.

En esta zona se puede encontrar los siguientes tipos de roca:

FORMACIONES SEDIMENTARIAS:

Calizas blancas fosilíferas

Lutitas rojas

Areniscas

Calizas blancas y amarillas

Brechas calcáreas de chert

Calizas laminadas con yeso

Calizas arenosas

Brechas y areniscas de erosión.

Filitas.

Mármoles fosilíferos

Cuarcitas

FORMACIONES ÍGNEAS:

Basalto

Diorita + gravo

Capas tufáceas.

Volcánicos/volcánicos clásticos morados

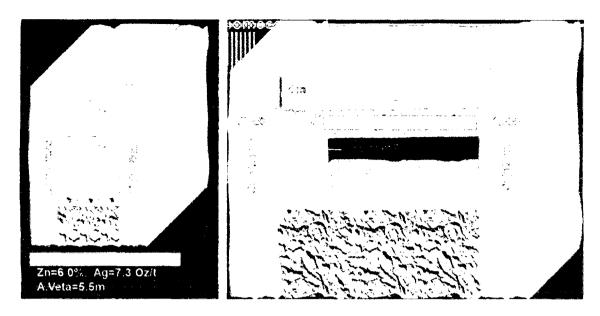
Intrusito intermedio (tipo Carahuacra Andaychagua E)

Intrusito acido (Tipo Chumpe)

Volcánicos/volcánicos clásticos básicos

2.2 GEOMECÁNICA.

2.2.1. CONSIDERACIONES GENERALES


Para determinar el comportamiento **Geomecánico** en el diseño del yacimiento de la mina Andaychagua, para establecer un mejor criterio de métodos de sostenimiento entere sostenimiento pasivos y activos, que brinde la estabilidad necesaria durante el ciclo del minado a la cual se desarrolla un mapeo estructural que permite definir el Angulo de buzamiento de la veta, la cual tiene los siguientes criterios de estudio.

2.2.1.1. MODELO GEOLÓGICO

Trata de caracterizar o definir la estructura de la masa rocosa; nos brinda información geológica del medio en la cual realizaremos la excavación. Se conceptualiza al Modelo Geológico el pilar clave para toda evaluación geomecánica de proyectos, ya que éste aportará información clave para el dimensionamiento de las excavaciones y estabilidad de las secciones subterraneas a diseñar.

2.2.1.2. MODELO GEOMECANICO

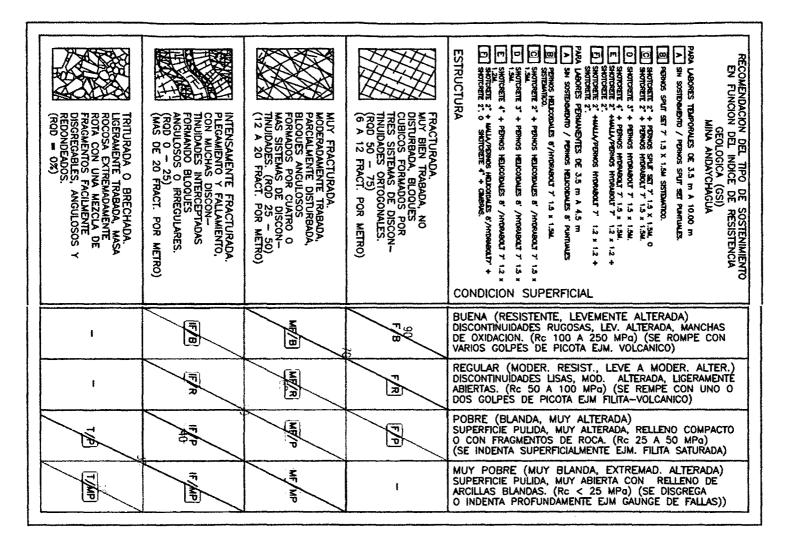
Permite cuantificar los parámetros estructurales y mecánicos del Macizo Rocoso. El modelo estará apoyado con la aplicación de técnicas de valoración de calidad de roca, así como instrumentación adecuada para la determinación de las propiedades mecánicas del macizo.

Fuente: Área de Geomecanica - YAULI - VOLCAN

2.2.2. CLASIFICACIÓN DEL MACIZO ROCOSO

2.2.2.1. CLASIFICACIÓN DE RMR BIENAIAWSKI

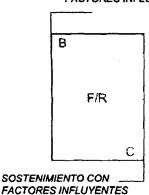
Permite hacer una clasificación de las rocas 'in situ' y estimar el tiempo de mantenimiento y longitud de un vano. Se utiliza usualmente en la construcción de túneles, de taludes y de cimentaciones. Consta de un índice de calidad RMR (Rock Mass Rating), independiente de la estructura, y de un factor de corrección. Fuente: CAMIPER – curso de ingeniería geotecnia – modulo 2


2.2.2.2. CLASIFICACIÓN Q DE BARTON

Fue desarrollada en el Instituto Geotécnico de Noruega (NGI) por Barton, Lien y Lunde y como en el caso del RMR está basado en varios cientos de túneles, construidos en Escandinavia principalmente.

El sistema consiste en dar al terreno una serie de parámetros que sustituiremos en una fórmula para así formar un índice denominado Q que es con el que podremos diseñar el sostenimiento, la variación del índice Q no es como en el

caso exponencial del RMR una variación lineal, en en este caso **98** da una


lmagen 1-Tabla GSI de la Unidad Productora Andaychagua

Fuente: Área de Geomecanica - YAULI - VOLCAN

SIN FACTORES INFLUYENTES: LA APLICACION SE REALIZA USANDO EL FLEXOMETRO Y LA PICOTA O MARTILLO, EN CONDICIONES NORMALES DE MINADO, EL SOSTENIMIENTO APLICADO SERÁ EL INDICADO CON EL COLOR DE LA PARTE SUPERIOR

CON FACTORES INFLUYENTES: LA APLICACION SE REALIZA CON EL FLEXOMETRO Y LA PICOTA O MARTILLO, LAS CONDICIONES CAMBIAN DEBIDO A PRESIONES DE LA ROCA, PRESENCIA DE AGUA, PRESENCIA DE FALLAS, REALCES NATURALES, EL SOSTENIMIENTO APLICADO SERÁ EL INDICADO CON EL COLOR DE LA PARTE INFERIOR

TIPO DE ROCA

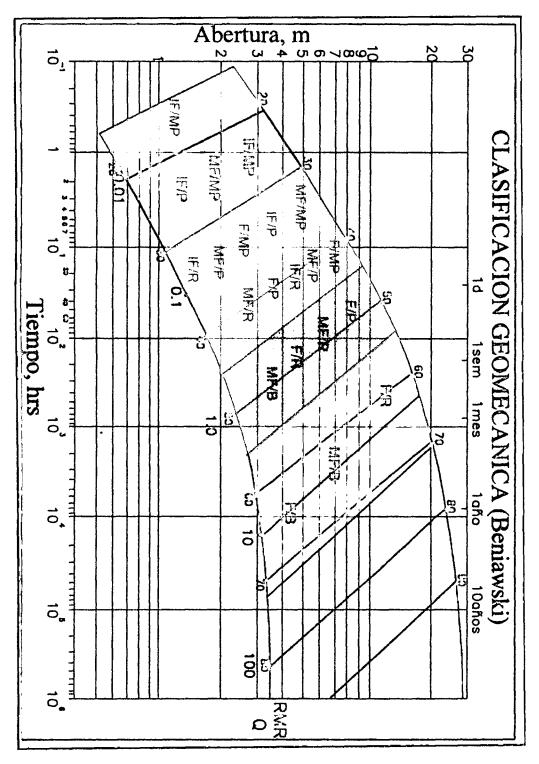
TIPO	(NDICE "GSI"	INDICE "RMR"	INDICE "Q"	CALIDAD DE ROCA	TIEMPO DE AUTOSOPORTE
------	--------------	--------------	------------	-----------------	--------------------------

L			<u> </u>	<u> </u>		
1	F/MB, LF/MB, LF/B	81 - 100	55 - 500	Muy Buena	8 Massas Aprox.	
11	F/B, LF/R, F/R 61 - 80		6 - 55	Buena	2 Meses Aprox.	
III A	MF/R, MF/B 51 - 60		2 - 6	Regular	1 Mes Aprox.	
III B	MF/P, F/P	MF/P, F/P 41 - 50		Regular	2 Sentanas Aprax	
IV A	IF/R	31 - 40	0.2 - 0.6	Mala	60 Horas Aprox.	
NB	IF/P, MF/MP	21 - 30	0.07 - 0.2	Mala	20 Horas Aprox.	
٧	IF/MP, T/MP	< 20	< 0.07	Muy Mala	8 Horas Aprox.	

CONSIDERACIONES DE SEGURIDAD PARA EL SOSTENIMIENTO DE LABORES MINERAS

CUANDO EN EL AVANCE DE LAS LABORES MINERAS SE ENCUENTRE ROCAS INCOMPETENTES SE PROCEDERÁ A SU SOSTENIMIENTO INMEDIATO ANTES DE CONTINUAR LAS PERFORACIONES EN EL FRENTE DE AVANCE APLICANDO EL PRINCIPIO DE "LABOR AVANZADA, LABOR SOSTENIDA".

EN EL PLAN DE MINADO DEBEN CONSIDERARSE LAS CONDICIONES MAS DESFAVORABLES DE LA MASA ROCOSA PARA ELEGIR EL METODO DE EXPLOTACION DE MENOR RIESGO QUE PERMITA LA SEGURIDAD DEL PERSONAL, MAQUINARIAS, ESTABILIDAD DE LAS EXCAVACIONES Y LA BUENA PRODUCTIVIDAD.


CONSIDERAR INSPECCIONAR LAS LABORES, VERIFICAR LAS CONDICIONES DEL TERRENO ANTES DE ENTRAR A LA ZONA NO SOSTENIDA, DESATAR TODAS LAS ROCAS SUELTAS ANTES DURANTE Y DESPUES DE LOS CICLOS DE MINADO, CONSERVAR EL ORDEN Y LIMPIEZA EN EL AREA DE TRABAJO Y TENER LAS SALIDAS DE ESCAPE DESPEJADAS.

LOS SOPORTES PARA LOS TECHOS, PAREDES Y/O PISOS DEBEN UBICARSE DE MANERA UNIFORME RESPETANDO LAS ESPECIFICACIONES TECNICAS DE DISEÑO ESTABLECIDAS EN EL PLAN DE MINADO.

EN LA ETAPA DE RELLENO ASEGURAR LA COMPACTACION DEL RELLENO TOTAL DE LOS ESPACIOS ABIERTOS EVITANDO FUTURAS SUBSIDENCIAS O FRACTURAS QUE AFECTEN LA ESTABILIDAD DE LA ZONA MINADA.

Fuente: Área de Geomecanica - YAULI - VOLCAN

FIGURA 2.- TABLA RMR DE LA UNIDAD PRODUCTORA ANDAYCHAGUA.

Fuente: Área de Geomecanica - U.E.A. Andaychagua

2.2.3. MAPEO GEOMECANICO

Fig. 03 Resultado Geomecanico de labores de Riesgo.

	LABORES DE RIESGO MINA ANDAYCHAGUA								
	Por: Ing. Marco Lozada Ore - Geomecánico Andaychagua.								
AI 06/02/2016 - Dia									
	LABOR	EVAL.	DESCRIPTION		RESPONMENT				
		RIZSOO Y	RECOMENDACIÓ (MEGOTIMIENTO.	RMR	E .	FECHA verillen			
	EDPLA ALIZA								
&CO	1C_3 54 B	9	ROCA: METRIP, LMA 3.0 ests. TAS = 10 HORAS SOST NIMENTO: Stateria 3" + / P.Hyd a 1.5 ests RECOMENDACION: Se etc. 7 s. Gro artillado es la corresa, se tieno que percutar pera peder contiguer con el minuda, englerar la seledara y el percetado se reducira el IMA a 3 m.	20 - 25	VOLCA N	02-02-17			
E30	SN_365 x AC_3669	9	ROC ve ME/R-P, LMAvisko ents. 'E Ni - 15 E/O(155 SONT NIMIÉ NIO: Statercie 3" + / P.Hyd a 1.5 mis RECOMEND ACION: Resilier i les asemens enn salo statercie borta stitenar una leogitud de Gaia gura leoga completer con la instalación de les gernes hydraboli.	20 - 25	VOLCA	CS CLA7			
ജ	म् १७५४०, छ।		DOCAC MATA-2, LALAC 3.0 cm. 145 or IV 10 DEAFO SOS EVENTO: NO DE MANA EL 3" (LAS) 4 P.Hydrobetta 1.5 cm. PER OPENA ELNE Controlle l'altino ya e re libro 4.5 cm; 42 sociamer con el some internitante infincia. Una de nota filla egili sela con l'èpe a processi e de egen.	23 - 35	VOLCAN	69-07-17			
Starte	AU_632 x ltp, 626	В	NOTA : MEMBER, LMA : 3.0 mts. 3 AG : 10 MEMBAGO SONG NACION TO Shipteeth di 37 (UMS + P.Hydrobulta 1.5 mb : EDCOM NACION: Se escus din Ship temprepada din biban terrona con Che (Lellinoda, se recombrob) dente mecaninda y LMA 3 cos controllatas da chibante y portos.	25-35	VOLCAN	20-09-57			
\$20	W_(1324 x ldp_126	9	BOONS 1878 P. EMAN COMMERCEN STEETING (COSTS NOTOS NOTOS NOTOS AS COMMERCENS & EST COMMENS & EST COMENS & EST COMMENS & EST COM	25 - 33	VOLCAN	15-C1-47			
(C)	AC_364B		DECEMBER 18 DE LA MERCE LE COMENTA DE COMENTA DE LA COMENTA DE COMENTA DE COMENTA DE COMENTA DE LA COMENTA DE COMENTA DECENTA DE COMENTA	2 .h - ₹7	VOICA N	C#482 17			
sco	TJ_ICTEAC_CHE		ISOCA MARA, LAMATI 3.0 mts (a.15 - 153 MT) (block No 800 MT NOON NOO Streets de 3 MG/MD + P. Mystoch die 1.5 mts 137 KONG NO NOON Se recombend a hop in back mar qua enta era 5.2 ms n. 4.5 m engral enhadan gana godon erabitun du ute dad fancte, el sociombon de dat mila ada com era el anticombe y gantos.	25 - 35	VOIZ AN	28-49-4 7			

	T	,				
1170	TJ_f10F6x AC_685	В	BESCA: CT: METER P / CP: METP, EMAN 3.6 min. PAS in 12 HORAN. EDSTENIME NFO: Explored 2" + Molto + P. Hydrobot a 1.5 m. Streende 2" RE COMENDACION: Not excentrame form to long por in emil septic controler in specific, els monthibles seen pendin, se recontents perforar solo 0" por tenor en el fivene fill in historiales con presente de epino.	23 - 39	VOIÆA N	C5-92-17
1270	Rige, Unio	•	UCKN AN PRO UI. 1954-30 mm. 5AA - 17.000 (market). UII PIT NITAN WING NITAN HAR AN A SAME AND RECIPION OF METAL A SINGER OF 20 UII PIT NITAN UII AND PROPERTIES AND	45 - 55	VOLC4N	25-01-17
1203	13_500 ± A(_64A	Э	ROCA:: MERLP, LMAN 6.6 rds. TAS 1 INSEDIATO. SIGNISMENTO: Softered 2" + Molty P. Hydrobelt 1.5 arts + Soctered 2" ROCOM NDACION Se offers of late entries, con presents de Eliteration de sepre, por lo que e chies returna el americalizato de la entri technica en Si 2" + moltyphydrobelt + Si2", a ls entri ptos con ricitarets 3" y pertou.	30 - 35	HEA	€;; (' 2 1"
1203	FG* 04.4(-)	9	ROCAS ME/P-R, EMAS 6 mis. Table 12 borns SUCTE MMIPN FO: Stockwar (2"E/M) + Maib./P. Hydraticht 7" + Emiterate 2" SIF RECOMENDACION: Frakte con roca Elitia Efficients, da seutrich al proyecto po terkvituerte se reformal con scallo la mus de la faterasectio.	25 - 35	IISA	39-04 t*
1263	xc _e m		EOCA: B.R.P., "TAS = ISSILUTATO. SUSTINIMIE NTO: Shoterete & 2" (1781)+ Motto/P.Hydrabolt 7" a 1.5 + Einterste 2" 17M RECOMI ND CHÓN: Se etherra d'Antenne indables'n & matta, se récontinda colocor modia complata sa toda la seveloù pura podar lugar tipor era ricoterete.	2535	IIBA	17-¢1-17
1200	AC COPEDS CO	•	BOXIA- (BAZ, LMAA-S,C tota, TAC) > PASCIDITATO SUDTENIME NTO: Ethiologue de 20 (Entité NECLUZ-Hydrathut 7 e 1,5 + Enfetome 2° 27M BL'COMBABACOUNT Et sestection de Conedido, ya que se et serve et sacribé de terrece al tape de la Table uses Cinacille de egus. Sys de terrece filite titutionse.	25 - 5*	E*EA	e5-c2-17
1259	127_1225 10	,	ROCAN HIP LAMAN 3,0 cm. TAS O 12 HORAS FORTI SIMBINIO Enderret d 311 (LAM) PERSIMADE II a 1.5 RECOMEND ACION: La celtiful data terreton ha uniforada, se escrentro mas competente por la difetiblección de la 11ths, timos el contenindento con enjesor de abstrate de 3 polytos se controlorio con el coj de coli hradores.	35 - 40	IISA	27-01-17
1269	IP 1225 W	9	ROCA:: II.P LMA=3.0 me. TAS = 12 ROEAS SOCICIAMED NTO christeres de 2" (LM)+ MiddleP.Hydresholt 2" a 1.6 + Shoteres 2" EM RIX OME NO CHON: La blor se exception dispured ay Bern da carea Cita ecospiciar el cris cimiento reconsistado, por el tiempo de sottoriparte en la corsta expuesta sia essistimistrio as prode rechtos de so completar el sottorimismo reconsistado.	35 - 43	II'SA	17-01-17
g*************************************	₩_111 ± £\$_12%£	•	ROCACITER-IP LIMA - 6.0 mb. TAN - 24 MOTAS SENTI MIMIT NTO: SEnterets do 3º especial + Hydrobolt 1.5 x1.5mb RIXOMENDACION: Se reconstructs serve extindo con el avuera por enter próximos a la proyección de um fatta por la que de combian el terrero redestr el LMA. Radicar deste construit.	35 - 40	IESA	17-01-17
£15#	BG"13CSL		ROCIAN ITUSE P. LMAN 30 piet, ITAS: 24 IKUTUAN NUCLTENIMIT NTO: Einteren di 27 (FMI)+ Mullial Hydrobett 7° a 1.5 + Stinteren 27° FM RUCOMENDA CIONE Topa del forette affector pier um fullo de protente de 1 a 1.5 um certante di avones, reclimo punicado en ceretar que la registrada el motte de 4 etc. certante di avones, reclimo punicado en ceretar que la registrada el motte de 4 etc. certante di excavadón comidarcada punte de la cereta y el repudo de 6 tata. Crescionar el evoluce del bruta la excavadón comidarcada punte de la cereta y el repudo de 6 tata. Crescionar el evoluce	35 - 40	II5A	28-91-17
1203	CA_120B	5	ROCAL IMP. LMAN BUILT: TANE 12 HORAM. EDISTENSMIENTO: Afterese B"(I/M) + Moliniferents Hydrolicit a 1.5 m + Moliterese B"(M/) EDISTENSMIENTO: Afterese B"(I/M) + Moliniferents Hydrolicit a 1.5 m + Moliterese B"(M/) EDISTENSMIENTO: Ediploid of the state of the prior en el abritatetat, critici m el precentols de enta inner para profue eccapitante el se destinato persolo de migriland asta entanticipato para ol tener mojor titungo de esportetos es um totor trostolia. Sa reottora el referent especial en edu tibor por use de tempertendo pora el bostolia cua abritateta 3" Afton I ALTA COMPLITAR IL EDISTENMIENTO EL COMPLIADO.	35 - 45	IENA	17-01-17
12 00	AC_COIB X AC 693		ROCA: ME/R-P., TAT :: 12 BOYA/I SO/ED MMENTO: Sintereds of 3° (876) + P.Hydrobolt 7° a 1.5 RECOMENDACION: Realizer of reference to medical continuende docto is intersection on directional section 00%, see theretal greated the cultification of all disease decorbolts diffusion section 01B.	35 - 45	VOLCA N	22-01-17
12 07	TJ_6:::W x AC_(*3)	9	ROCA:::MF/R-P., LMA 3.0 pps. TAS = 12 HOBAS. SOSTENIMENTO:: Conterets do 3"(EM) + P. Hydroholt 7" a 1.85; RECOMENDACION: 14 their constitutement indo to edjo trebo y completin person, and biblio qui geologia dello: et ambado in chi to edjo pisa, toto apprintimationente 9 ci para fin do mbrodo por el primite de asgirpidad hosto el AC_COL.	35 - 4 5	VOLCA N	12-62-17
1700	TJ_cccl:XAC_csi	,	ROCANCE: MITREP - CIT: MEPP, LMA = 6.0 min TAPE - 12 HOUSES SORTENMHENTO: Sinterest & 17 (EM) especiale P. Hydrabott 7 in Life RECOMENDACION: En comma que moto gedingla pora rentisor en la ceja pivo ca es podra rentisme ya que se enecentra en la less financia.	31 - 45	VOLCA N	C7.C2-17

	ZONA BAJA							
1000	CA.,*22.0	5	DOCA: U.Z., LMS: 40 cm. (44) — 12 (UDAA) SOND-MANGUN (O PURCHANIANE) (Southern & 2 "QUAD +750U/P, Estimble (T = 1.5m. + 15ctmet) 2" (SUP) LUE OMUNDACUN: New Southern & 2 de financial (SUP) LUE OMUNDACUN: New Southern & 2007 (Supplied to 2 de financial (S	35 45	2754	€ळना र इ क		
1600	EP * 731 (1	3	DOMA STAR P., 1954 - 60° em. 180° - 18 NOTAG. SANTEN TO THE PLUTANTENED CONTROL OF STAR IN A NOTAGE. Represented The LEGIS enhances of 20° EM CONTROL OF THE RESPECTOR OF THE CONTROL OF THE RESPECTOR OF THE RES	35 45	VOLC'AN	C5-71 16		
\$00°	TJ 1200 v AC 1616	,	DOCA - 0.70 Pt. JOBA - 6.0 mbs 5.47 - 12 Bones SAGEE NACTEN 199 Shower de 2007 Mt + Nobel Pt. McCoeffort a 1.5 m + Rescente 27 ME BEGGE NOM MEN Despute de restruction de groupe acceptates was to thin stockes de to make trans- tioner a 1-2 ms.	25 25	VOLUAN	64-02-16		
1009	TJ_12000 x AC_1002 HACIA I L TOCO0	9	ROCACCI) i Techa HIRAR, Coja Pho MEIR P., LMAC act con TAS of 19 ROJAN. SONTENACH N For Shotmete 3" + P. Hydrabolt a 1.5 m. RI COMPADACION: Se continuous con LMA de 6 ra con el situada hojo de loro y contratuada la altera de 4.5 m. reciliar dende enfrectora y constante.	30.38	voica 8	কে জেবল		
1000	TJ_120°C x AC 1002 HACIA ELYT [©] D	3	ROCAMO, I Techo IDRAD, Coja Pito MSCEMB, LMAM 3.0 mb. TAS m. 12 RORAM. SUSTINITATINIO: Stockerske 24 + Malia d P. Hydrabett e I. Sus. + Stockerske 14. BIT COMENDAM ROYS for droops were for the 4 forecone mis sentillodd y con precessia de cristo, por 19 quo el sostentationio sono pendo con malio por presentativo rende cui distributo. Citadoro	25 - 30	VOLCA N	C\$-CZ E?		
toca	TALIPOTA AAULIOSE	9	HOUAN METP, I MANNON ENGLINACIONATO A CASTONICO AS CASTONICO AND CASTONICO AS CASTONICO AND CASTONICO AS CAST	30 × 35	VOLCA S	@/@.17		
≇श्रक	egerio a mano d	,	Entitle - EDDING Contact Description Contact Desc	35 40	V. PEK 1400	एक (2-1 7		
PRED	ದ್ದಿ ಚಿತ್ರಗಳ ಚಾರ	p	EDBASE IBDUILD FAST CONSENSES AND TO THE SECOND OF SECOND OF SECOND INTO A SECOND INTO A SECOND OF SECOND	. 15 .40	1 (254 1 43	Sent 14		
1150	XC,sc:	2	BOC An MAYE SEE, EMANGERS, I VON DESDEAM ENVIOLEMENTO: Syntamet de 2º (CAMP Mathe Welydrobeth Tot 1.89 hinterete 2º 800 BUTCAN NEAC(ON: realize of sentantations can sale shatarete or each dispers, isopered expends Eliperne (Cont) se completere can be tentateden de person bydraholt.	25 - 35	JENA	(주 (72 17		
1183	BP 3180E		EDUA - METAL P., LIMA VALO ETOTAIS (CREATAS). CONTENEM DIATO: Ellipticole 27 4 Milliofremen Hydrobolt 71 a 1,5 m + fabricole 27 EUCCOMUNIDATORIO Se diser en electrico en el crimie do la bioca, por la cientra resilibra demonda subschipa	35 4 0	1084	64-62-17		
1150	AC, 547	3	ROCAMMURAP, I MAMBLO nov. TAS - 12 NORIAG SOSTI NIMIC NIO: Sporente 21 4 Motio 4 Dillyd a 1.5 mm 4 Meterene 21 BIGCOMENHACION: Mejorne et serienimiente en la zuen de laterscerten era el XII "601, sentinimiente facta de entandar	2 5 - 3 3	HONA	€1.≺2-17		
1150	AC _e tes	7	RONAMII 62 P. LMA-3.0 cms. TAS o 12 HOFAN SONTENIMIENTO: S'obsercto 2" + Nullo + P. Ryd a 1.5 mm + Shoteneto 2" ROTOSII NDACION: Acto to observa is presente de encoy también con estructura do 9.20 mb berkraptoi el espaces. Se contingera ena el surtegimiento indicado	15 - 3 8	I USA	C4-(2-17		
1170	GAE 162	ł	CODE A 1870 P. 1884. 30 sms. 200. [Not Display] FOODS NEEDS (See Substrates 27 + Mode Child of 18 cm; + Abraces 27 FOODS NEEDS (See Substrates 27 + Mode Child of 18 cm; + Abraces 27 EU CODE DAG CODE See recognises prete despite based in Abraces 26, generation or recommission of seeds abraces assumed as that is a partial 182, specially of abraces on there are seen of the fact in a set of the control operator, a coloring of the first in a partial one error in the based is enough that a fact in a fact in a fact in a companies as a fact of the fact in a fact in	41 🤲	volcan	27 (3.57)		
1150	AC 650	8	DOCA TOPS BY, MAN TENDERSALES TOUR BYTH SIZE N. APPENDITURED BY SHIPS BY BYTH DEFENDED NAME TOPS I have no dispersor oppens encountry conflictions of project emographism and characteristic and the project in the pr	43 50	VOLUAN	28 CO 17		
					L			

1200	TJ_600 E X AC_063	9	ROCA= MF/R-P. LMA = Rebaje: 60 mts bajo losa TAS = 24 HORAS SOSTENIMIENTO: Shotcrete de 3" (F/M) + P.Hydrabolt a 1.5 mts. RECOMENDACIÓN: Reforzar con shotcrete toda la intersección rebajada.	21 - 30	VOLCA N	25- 0 1-17
1200	T <u>1</u> 680E X AC_061	,	ROCA= IF/R-P. LMA=3.0 mts. TAS = 12 HORAS SOSTENIMENTO: Sinetereto de 2"(F/M) + Malin / P. Hydraboli 7" a 1.5m, + Shoterete de 2"(S/F) RECOMENDACIÓN: Realizar el sesteministrato con malin en el trumo fuera de losa debido a la sección minada.	35 - 40	VOLCAN	29/02/2017
1200	TJ_600 W X AC_063	9	ROCA= MF/R-P. LMA = 6.0 mts Bajo losa TAS = 12 HORAS SOSTENIMIENTO: Shotcrete de 3" (F/M) + Malla / P.Hydrabolt a 1.5 mts. RECOMENDACIÓN: Dicha labor nos encontramos fuera de losa por la cual se coordino realizar el ultimo disparo, realizar el sostenimiento pesado en el ultimo disparo.	21 - 30	VOLCA N	19-01-17
1170	TJ_600 E X AC_083		ROCA= MF-IF/R-P, LMA= 3.0 mts. TAS = 24 HORAS. SOSTENIMIENTO: CAJA TECHO (IF/R-P): Shotcrete de 2"(F/M) + Malia / P. Hydrabolt 7" a 1.5m. + Shotcrete de 2"(S/F) / CAJA PISO (MF-R): Shotcrete de 3" (F/M) + P. Hyd 7 a 1.5 m. RECOMENDACION: Se tiene que completar el sostenimiento de las cajas para preparar para relieno.	25 - 35	VOLCA N	14-01-17
1200	TJ_499 W X AC_123		ROCA= IF/RP LMA= 6.0 mts. TAS = 24 HORAS SOSTENIMTENTO: Shotcrete de 3" + P. Hydrabolt 7' a 1.5m RECOMENDACION: Hacia la caja piso de observa una faisa caja de la cual se realizara el percutado antes de sosiener.	21 - 39	VOLCA N	06-02-1 7
1200	TJ_406 E XAC_123		ROCA= MF/R-P. LMA = 6.0 unta TAS = 24 HORAS SOSTENIMIENTO: Shotcreto de 3"(F/M) + P. Hydrabolt 7' a 1.5m RECOMENDACIÓN: Controlar la altura en el tajo tiene mas de 5 m de alto fuera de estandar.	21 - 36	VOLCA N	6 6-02-17

Fuente. Área de Geomecanica - U.E.A. Andaychagua

2.2.4. USO Y APLICACIONES EN LA MALLA DE PERFORACIÓN

Diseño de Malla de Perforación;

Es el esquema que indica la distribución de los taladros con detalle de distancias, cargas de explosivo y secuencia de encendido a aplicarse.

Paramentos De Roca;

Son determinantes como variables incontrolables, los cuales tenemos:

- Las propiedades físicas, (densidad, dureza, tenacidad, porosidad)
- Las Propiedades elásticas o de resistencia (resistencia a la compresión, tensión, fricción interna, cohesión, Condición geológica.

Parámetros De Explosivo;

Son variables controlables como las propiedades físicas o químicas (densidad, velocidad de detonación, presión de detonación, energía del explosivo, sensibilidad, volumen de gases)

Parámetros de Carga;

Son también variables controlables en el momento del diseño de la malla de perforación y voladura, (diámetro del taladro, longitud del talado, confinamiento, acoplamiento, densidad de carga, longitud de carga).

2.3 MINERÍA.

2.3.1. LABORES DE DESARROLLO, PREPARACIÓN Y EXPLOTACIÓN.

2.3.1.1. DESARROLLO.

GALERÍA.

Labor que avanza a lo largo de la estructura mineralizada con fines de exploración y desarrollo, con gradiente de 1/1000 positivo.

CHIMENEAS VERTICALES:

 Chimeneas con Raise Borer.- Labor que se construye mediante el Raise Borer. Tiene un diámetro 1.5m, cuya función es netamente de ventilación, la limpieza del material (producto del rimado), es extraído por la parte inferior. Chimeneas convencionales.- se ejecutan con secciones de 1.5m
 x1.5m en un punto estratégico próximo al tajo, estas serán usados como orepass y fillpass, en ocasiones como servicio auxiliar.

CHIMENEAS INCLINADAS.

Se construye en la estructura mineralizada siguiendo el buzamiento, de acuerdo a la longitud se construye en "H", cuya función será de ventilación, echadero de mineral y de servicio auxiliar., siendo la sección de 1.5m x 1.5m y/o 1.2m x 1.2m de acuerdo al proyecto.

2.3.1.2. PREPARACION

Una vez seleccionado el método de explotación se dimensionan los tajos de longitudes de 120 m. con una altura de blocK de 18 a 20 m. y un ancho de 3 m. a 10 m. En función a estas dimensiones se procede a construir las rampas de acceso con pendientes máximos de equipo LHD y las chimeneas y/o Orepass.

- Rampa de Acceso en "Z" (3.5 x 3.0m.).
- 01 Chimenea para echadero de mineral (1.5 x 1.5 m.).
- 02 Chimeneas de Servicio (1.2 x 1.2m.).
- 02 Acceso de la Rampa hacia la Veta (3.5 x 3. m).
- By Pass con sección de (3.5 x 3.0 m).

2.3.1.3. EXPLOTACION

La labor de explotación que se pudo observar en la U.P: Andaychagua es de la producción. Los tajos que se explotan a base de taladros largos.

2.3.2. EQUIPOS PRINCIPALES DE PERFORACION.

Los equipos utilizados en la perforación primaria, está constituido por lo siguiente:

- 03 perforadoras S1D BOOMER 281 (Atlas Copco).
- 05 Perforadoras DD311 AXERAS HLX5 (Sandvik).
- 04 perforadoras de sostenimiento BOLTEC (Atlas Copco)

2.3.3. MÉTODO DE EXPLOTACIÓN.

Consiste en romper el mineral en diferentes pisos y en sentido descendente. Después que un corte o piso haya sido completamente extraído, se procede a rellenar antes de empezar el nuevo corte en el piso inmediato inferior. Este relleno es el que va ayudar en el sostenimiento del techo del nuevo frontón que se abre. El minado del mineral continúa piso por piso hasta terminar el bloque.

El minado se hace en rebanadas horizontales, luego se rellenan colocando previamente una loza de hormigón pobre y/o rico o relleno cementado, este servirá de techo artificial de rebanada siguiente. Este método es exclusivamente para yacimientos en cuerpo, y fuertemente movido.

En la explotación del yacimiento de Andaychagua, se aplica el Método subterráneo Corte y Relleno descendente o de losas, cuya elección se debió a las características del yacimiento:

- Métodos de explotación de Filas Taladros Largos
- La mineralización se presenta en un cuerpo de veta encajonante de dimensiones apreciables.

> DESCRIPCIÓN GENERAL

Este método es el mejor empleado en vetas inclinadas y que requiera un minado selectivo ya que permite, el mineral roto que tenga un bajo valor sea dejado en el tajo entre otras consideraciones.

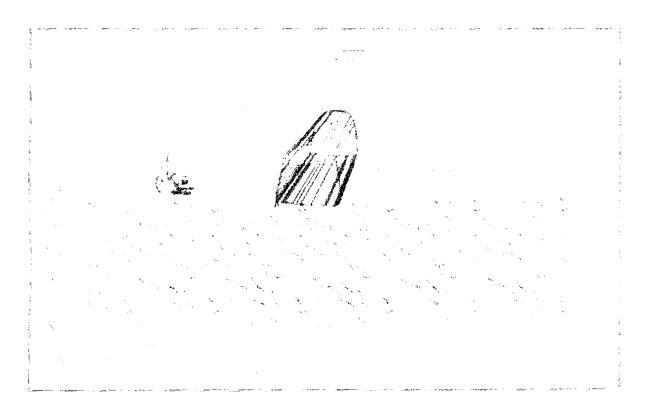
> DESARROLLO

NIVEL DE PRODUCCION PRINCIPAL

Se realizara un By Pass principal desde los cuales se accede a la veta cada 50 metros, para luego correr galería en el mismo nivel, este nivel también sirve como nivel de extracción.

RAMPA DE PRODUCCION

Se construye una rampa que corre paralelo a la veta, desde los cuales se accede hacia la veta para seguir tajeando en los sucesivos cortes.


CHIMENEAS

VENTILACION

Se construye 02 chimeneas de ventilación en los extremos de las alas, para generar el circuito de ventilación

ECHADEROS

Se construye 01 chimenea ligada a la rampa como echadero

Fuente. Área de Geomecanica - U.E.A. Andaychagua

Ventajas

- ✓ Permite recuperar el mineral en proporción muy alta.
- ✓ Evita la inestabilidad con mineral y cajas falsas.
- ✓ Elimina totalmente el sostenimiento de los techos.
- ✓ Aumenta la seguridad.

Desventajas

- ✓ El contaminante, principal es el relleno (hidráulico e hidroneumático)
- ✓ El tiempo de rellenado es lento.
- ✓ Incrementa costos por limpieza a causa de fuegos y atoros del relleno.

2.3.3.1. RESUMEN: DEL DISEÑO DETA ANDAYCHAGUA.

PARAMETROS	VALOR
Angulo de Inclinación de veta	70° a 90°
Ancho de veta	9 m.
Diseño de perforación	4.5 x 4.5m.
Sección de rampa	34.5 m.
Buzamiento de mineral	70°
Altura de tajeo o slot	21 m.
Días Operativos por año	360 días
Guardias/Día	2/12 horas
Gradiente de rampa	15%

2.3.4. CICLOS DE OPERACIÓN MINERA.

Son las operaciones unitarias que han sido establecidos de tal forma que la utilización del equipo alcance rendimientos óptimos. Comprende: Perforación, voladura, carguío, acarreo y bombeo.

2.3.4.1. Perforación

Se efectúa en los frentes de ataque de avance con altura de corte de 3.10 m. Los equipos utilizados para este fin son: el jumbo hidráulico con Axera de 12 pies de longitud para los frentes de avance y cimba S7D de 18 a 20 m. en los taladros largos.

Imagen 02. Equipo de perforación frontonero

2.3.4.2. Voladura.

En la voladura se utiliza explosivos de baja potencia como son: semexsa de 65% y 45%, exadit 45% y los accesorios como es el exel y tecnel no eléctricos, cordón detonante 3P, mecha de seguridad y mecha rápida al mismo tiempo pues se realiza voladuras especiales (controlados) para minimizar el efecto secundario del explosivo y como tal reducir los costos.

2.3.4.3. Desate Mecanizado.

Después de cada voladura se realiza el desatado de rocas con el equipo Scaler en los tajos de alto riesgo, donde el desatado manual ya no es posible debido a la altura y para no exponer al trabajador al peligro, el mecanismo de desatado es por medio de percusión y golpes sobre la roca suelta.

2.3.4.4. Limpieza.

El mineral tronado se carga directamente en los frentes de trabajo Nv 1250, de preferencia con equipos cargadores diésel montados sobre neumáticos – scoop de 6yd³.

2.3.4.5. Transporte.

Consiste en el accionamiento, las instalaciones, mecanismos y disposiciones necesarias para desplazar los materiales mineros desde el punto de descarga hasta su lugar de descarga o su destino final. Las funciones que debe realizar el acarreo son las siguientes:

- Mover el material arrancado, materia prima que es el fundamento de la mina que se explota.
- Mover el estéril que se produce como consecuencia de la explotación del yacimiento.
- 3. Accionar todas las instalaciones que sean capaces de efectuar esos movimientos y desplazamientos. Un factor muy importante incluye el mantenimiento de dichas instalaciones para garantizar su funcionamiento con el mínimo número de averías que ocasionen paradas.

4. Se prefieren los cargadores LHD conjuntamente con camiones FM. Siendo estas, transportadas al echadero del nivel 1000 que son extraídos por el pique Roberto Lets hacia la planta de Andaychagua.

2.3.4.6. Sostenimiento.

Se realiza con equipos mecanizados y robotizados para el concreto lanzado (shotcrete) por vía seca y húmeda, con espesor de 2". Sobre ello se instala los pernos hydrobolt de 5' y de 7' espaciados a 1.2 m x 1.2 m. en forma sistemático.

2.3.4.7. Relleno.

2.3.4.7.1. Relleno detrítico.

Las rocas provienen de las labores de preparación y desarrollo seleccionados por su dureza y menos higroscópico como las margas rojas, el cual conforma el 50% del relleno.

2.3,4.7.2. Relleno hidráulico.

El relleno se bombea desde la planta hacia el silo Nº 03 que está ubicado en la bocamina Rp-mirko a una distancia de 2.5 Km con una densidad de 1,950 gr./lt, el cual es distribuido a través de tuberías de 3" hacia los tajeos programados para el relleno.

2.3.4.8. Bombeo

Es la extracción de aguas acumuladas a las cámaras del mineral o frentes por medio de las bombas hidráulicas que extraen de nivel a nivel hacia superficie.

2.3.5. OPERACIONES UNITARIAS

2.3.5.1. PERFORACIÓN

Una vez que se han definido los puntos a perforar y se tiene acceso al sector de trabajo. Cumplido con esto el equipo toma posición para iniciar la operación.

2.3.5.1.1. PERFORACIÓN PRIMARIA.

La perforación de taladros en la Mina Andaychagua, se realiza mediante perforadoras Atlas Copco y Sandvik, con capacidad de perforación hasta 3.7 m de longitud con barras de 8, 12 y 14 pies. Otras características y **accesorios** son:

1.- Peso del equipo : 15 Tn

2.- Capacidad de Compresora : 1,800 CFM

3.- Pull Down (peso sobre la roca) : 75,000 Lbs

4.- Perfora taladros de : 7, 12 y 14 pies

5.- Velocidad de perforación : 24 m/min.

6.- Barra : 7, 12 y 14 pies.

2.3.5.1.2. PERFORACIÓN SECUNDARIA.

La perforación secundaria en la Mina Andaychagua se realiza solo en taladros largos, mediante perforadoras Atlas Copco y Sandvik, con capacidad de perforación hasta 22 m de altura de tajeo con 18 barras de 5 pies. Otras características y **accesorios** son:

1.- Peso del equipo : 15 Tn

2.- Capacidad de Compresora : 1,800 CFM

3.- Pull Down (peso sobre la roca) : 75,000 Lbs

4.- Perfora taladros de : 9 7/8"

5.- Velocidad de perforación : 24 m/min.

6.- Barra : 5 pies.

2.3.5.2. **VOLADURA**

La voladura es una de las operaciones unitarias más relevantes dentro del proceso de extracción de mineral y se encuentran ligada a los parámetros de las operaciones de perforación.

El objetivo de estas operaciones en conjunto es proporcionar una fragmentación adecuada, buen apilamiento del material, buen piso, desplazamiento controlado, proyecciones de rocas controladas y vibraciones controladas, de tal manera que el transporte y chancadora primario, tenga una alta eficiencia y costos mínimos.

Para la voladura se realiza el diseño teórico de los parámetros de voladura para cada tipo de roca, usando diferentes métodos de aproximación para luego ser aplicados en el campo y realizar evaluaciones constantes que nos permitan hacer ajustes de cálculo para conseguir los objetivos trazados.

a).- EN LA ZONA DE MINERAL

Malla : 3.5×3.5

Factor de Carga : 0.60 (kg/m3)

Densidad lineal del explosivo : 11 (kg/m)

b).- EN ZONAS DE DESMONTE

Malla : 3.5 x 3.5

Densidad lineal del explosivo

9 (kg/m)

2.3.5.2.1. DISEÑO Y DISTRIBUCIÓN DE CARGAS EXPLOSIVAS.

En la Mina Andaychagua se tiene diferentes diseños de carga explosiva tales como:

Diseño para carga explosiva en taladros para zonas de mineral y para zonas de desmonte. Así se tiene los siguientes.

2.3.5.2.2. EXPLOSIVOS Y ACCESORIOS EMPLEADOS.

Los explosivos y accesorios empleados, el Nitrato que se usa es el Expan 200 en prill porosos con una densidad de 0.67 gr/cm3, de fabricación Sudafricana que luego de realizar una mezcla estequiométrica con el diesel N° 2 en un proporción de 94% de nitrato y 6% de diesel forma el explosivo anfo.

Se está trabajando con cargas distribuidas (Deck) lo que permite hacer una mejor distribución del explosivo en toda la columna.

En los accesorios de voladura se utiliza como iniciador de las cargas se usan los Carmex, como línea descendente de los faneles de 7 y 14 metros de 800 milisegundos y en superficie los conectores troncal duales (CTD) de 17, 42 y 100 milisegundos.

Para el amarre se utiliza conector troncal dual (CTD) unidimensional para los tajeos.

2.3.5.3. CARGA Y TRANSPORTE.

La roca removida es cargada con scoop de de 2 a 6 yardas cúbicas a camiones de una capacidad de 25 a 30 toneladas. La roca de desmonte es acarreada a la zona de almacenamiento de desmonte. Las distancias promedio de acarreo

son del orden. El mineral es llevado en camión, ya sea a la chancadora o directamente a las pilas de lixiviación. El movimiento total de material se estima en un máximo de 1 260 000 toneladas de mineral anuales.

2.3.6. PRODUCCIÓN

La producción de mineral de la Mina Andaychagua es de 3500 TM Diarias y 105 000. 00 TM mensual de desmonte, lo que da una relación de desmonte/mineral (D/M) = 1.65 la ley de cabeza es de 7.80 gr. Ag /TM y la ley de corte (cut - off) establecido es 7.5gr. Ag/TM.

El mineral de ROM (mineral de baja ley), este mineral es llevado directo al Leach Pad y la ley de corte para este mineral es 7.0 gr. Ag/TM.

CAPITULO III:

METODOLOGIA

3.1 PARAMETROS DE PERFORACION

Para que una voladura sea correcta se debe tener muy en cuenta el diseño de la malla de perforación la cual inicia con el análisis de los parámetros de perforación.

Cuadro 01 - Parámetros de Perforación Usados en la U.P. Andaychagua

YAULI	ValeAn		·				Andaychagua				
	[Ma	ila de pe	rforacion	y Esquen	a de cargu	io 4.0 m x 4.0 m de	11 pies			1
Taladros Perforados	46	Long.	Barra	12 Pies	3.66	ØB	roca Prod. (mm)	45	Volum	en Roto m3	48.64
Taladros Cargados	39	Long. E	fectiva	11 pies	3.2	∌ Bn	oca Rimado(mm)	102	Kilos de	e Explosivo	94.84
				L	R	MR 51-60					
PERFORACIÓN CON J	UMBO			W2	DE CARTUCH	OS PORTAL	ADRO		ACC	ESORIOS	1
Descripción		NETal	E 3000 1	.1/2 x 12	E 3000 1	1/4 X 12	E 1000 1.1/4 X	12	Retardo	Cant.	KPI
		1	und/tal	total/tal	und/tal	total/tal	und/tal	total/tal	fanel ^e		
Precorte (Coron	a)	4							MS 1		F.de carga
Alivio (Rimados)	4							MS 9		(Ke/m3).
Rompeboca		1		0	12	12		0	MS 1	1	1.95
Arrangue		4		0	12	48		0	M5 14	1	
1era ayuda		4		0	11	44		0	MS 17	1	% Avance
2da ayuda		4		0	10	40		0	LP 2	2	95%
cuadradores		6	<u> </u>	0	9	54		0	LP 4	2	F.de Avance
Ayuda arrastre		4_		0	9	36		0	LP 6	4	(log/rol)
Ayuda corona		2		0	6	12		0	LP 7		31.69
Hastial		4		0	7	28		0	LP 8	4	<u> </u>
Corona		5		0	6	30		0	LP 10	4	X Perforacion
Arrastre		5	ļ	0	9	45		0	LP 12	6	86%
TALADROS PERFORA		46		0	3/		00				4
KILOGRAMOS DE CANG	A TOTAL	94.84		KG	94.84	KG	0.00	KG]		J

Fuente: Área de Planeamiento de la U.P. Andaychagua.

3.2 CALCULO DE BURDEN Y ESPACIAMIENTO

La dimensión del burden se define como la distancia más corta a un punto de alivio al momento que un barreno detona el alivio se considera normalmente como la cara original del tajeo o bien cómo una cara interna creada por una hilera de barrenos que han sido disparados previamente con un retardo anterior. La selección del burden apropiado es una de las decisiones más importantes que hay que hacer en un diseño de voladuras. De todas las

dimensiones de diseño en una voladura el burden es la más crítica. Se utiliza para nuestros cálculos la siguiente formula.

CALCULO DE MALLA DE PERFORACION

Diámetro	(D)	2.008	pulgadas
		0.051	metros
Gravedad especifica del explosiv	0		
(GE explosivo)		0.81	g/cc
Gravedad especifica de la roca			
(GE roca)		2.5	ton/m ³
Longitud de taladro	(L)		11 Pies

BURDEN (B) EXSA

$$B = 0.363 \times D \times \left[\frac{De}{Dr} \right]^{0.33}$$

Dónde:

B : Burden (m)

D : Diámetro de la carga (pulgadas)

De : Peso específico del explosivo

Dr : Peso específico de la roca

Para los taladros de avance tenemos:

D: 2.008 Pulgadas

De : 1.2 g/cc

Dr : $2.5 \text{ Ton/m}^3 = 2.5 \text{ g/cc}$

$$B = 0.363 \times 2.008 \times \left[\frac{0.81}{2.5} \right]^{0.33}$$

B : 0.50 m.

$$S = 1.25 \times (B)$$

Dónde:

S: Espaciamiento (m)

B : Burden (m)

B : 0.50 m.

S = 1.58x(0.50) =: 0.79 metros

DATOS PARA EL CÁLCULO DE BURDEN Y ESPACIAMIENTO.

Capacidad de carga para diámetro 2.008"

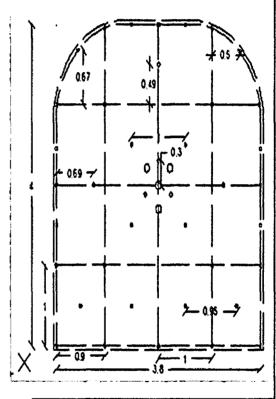
<u>Datos</u>		
Diámetro del Taladro	2.008	Pulgadas
Malla de Perforación	3.5	x 4.0 metros
Longitud de Taladro	3.35	Metros
Peso específico del explosivo	1200	kg/m ³
Peso específico de la roca	2.5	ton/m ³
Resultados:		
Volumen movido por taladro :	0.00752	m ³
Tonelaje movido por taladro :	0.0188	ton
Área transversal del taladro:	0.00204	m ²
Volumen de taladro:	0.00804	m ³
Cantidad de explosivo usado por		
taladro:	2.03	kg de explosivo
Cantidad de explosivo usado por		
metro:	0.61	kg de explosivo/m

Factor de carga: 1.53 kg de explosivo / m³ de mineral

Fuente: Area de Planeamiento U.P. Andaychagua

3.3. DISEÑO DE MALLA DE PERFORACION

Para el cálculo y aplicación del diseño de mallas de perforación se considera:

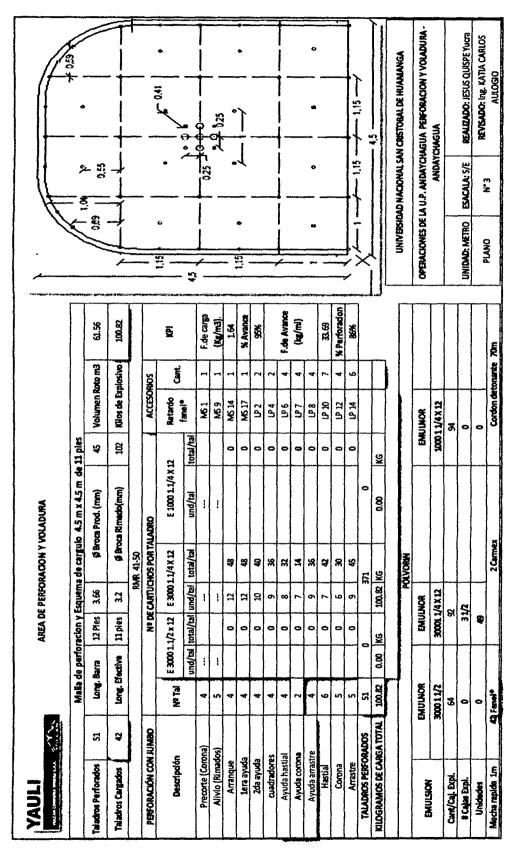

a. propiedades del macizo rocoso

- propiedades geológicas de la roca.
- propiedades geomecánicas de la roca.
- geomecánica estructural local.

b. diseño operativo de la Veta Andaychagua.

- altura del tajo.
- ancho de minado.

THE STATE ST	3		Molla	da nede	racion ··	- Serusama	de carguio 3.8 m x	40m do			
Taladros Perforados	40	Long.		12 Ples	3.66		oca Prod. (mm)	51		en Roto m3	47.88
Taladros Cargados	32	Long. E	fectiva	11 pies	3.15	Ø Bro	ca Rimado(mm)	102	KI los d	e Explosivo	73.11
					L	RME	21-30				
PERFORACIÓN CON	JUMBO			Nº D	E CARTUC	HOS PORT/	NLADRO		ACC	ESORIOS	
Descripción	1	Nº T±	£ 3000 1	1/2 x 12	£ 3000	1.1/4 X 12	E 1000 1.1/4)	(12	Retardo fanel®	Cant.	КРІ
		·	und/tal	total/tal	und/tal	total/tal	und/tal	total/tal			
Precorte (Coro		4					***		MS 1	1	_
Alivio (Rimad	os)	4							MS 9	1	F.de carga (Kg/m3).
Arranque		3		0	11	33		0	MS 14	1	1.53
1era ayuda	1	4		0	11	44		0	MS 17	1	% Avance
cuadradore	s	6		0	9	54		0	LP 4	2	95%
Ayuda ərrəst	re	4		0	8	32		0	UP 6	4	F.de Avance (kg/ml)
Ayuda coror	na	1		0	8	8		0	LP7	4	The Avance (1805)
Hastial		4		0	1	4	5	20	LP8	4	24.43
Corona		5		0	1	5	5	25	LP 10	4	% Perforation
Arrastre		5		0	9	45		0	LP 12	6	86%
TALADROS PERFO	RADOS	40)		225	45			-	
KILOGRAMOS DE CAI	RGA TUTAL	73.11	0.00	KG	61.14	KG	11.97	KG			ا
			<u> </u>			POL	VORIN				
	8	MULNOR		EMU	LNOR			EM	JUNOR		
EMULSION	300	011/2×1	2	30001	/4 X 12			1000	1/4 X 12		
Cant/Caj. Expl.		64			2				94		
# Cajas Expl.		0		3					1/2		
Unidades		0		-51					-2		
Mecha rapida 1m	22	Fanel®		<u> </u>		2 Carme	¥	1		ordon detonan	te 45m


UNIVERSI	DAD NACIONAL S	AN CRISTOBAL DE HUAMANGA
OPERACIONES D		HAGUA PERFORACION Y VOLADURA - YCHAGUA
UNIDAD: METRO	ESACALA: S/E	REALIZADO: JESUS QUISPE Yucra
PLANO	N*1	REVISADO: ing. KATIA CARLOS

AULOGIO

PLANO 02 - DISEÑO DE MALLA DE PERFORACIÓN 4 X 4 m.

N. P. Primer and Street	.		AREA D	AREA DE PERFO	* KOCON	VOLADURA	acion y voladura - andaychagua	ş				11/5	
		Mask	Malla de perforacion y	acion y		fe carguio	Equema de carguio 4.0 m x 4.0 m de 11 pies	de 11 ple	9				
Taladros Perforados	\$	Long, Barra		12 Ples	3.66	(f) Broa	Ø Brocs Prod. (mm)	\$	Volumen	Volumen Roto m3	48.64	25.0	1 50 + 30 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Taladros Cargados	22	Long, Efective	i	11 ples	33	- Bross	Ø Broce Filmado(mm)	102	IGHos de E	iOlas de Explosiva	91.58	* * * / _	1++
					RAG	RMR 41-50							
PERFORACIÓN CON JUMBO	JUMBO			DEC.	САКТИСНО	ARTUCHOS POR TALADRO	6 2	***	ACCESORIOS	ORIOS		*	
Desarbalon		KT W	Z1 × Z/1'T 000E 3	axz)	E 3000 1.1/4 X 12	1/4 X 12	E 1000 1.1/4 X 12	1X 12	Retardo	S.	5		,,,,
•			und/tai totai/tai	otal/tal	let/pun	total/tal	ra/pun	total/tal	fanel				9 6 6 is
Precorte (Corona)	(ar	4	i		;		1		MS 1		F.de carga		-
Alivio (Rimados)	08)	5			:		!		WE 9	-	(Kg/m3).		したのと
Arrangue		7		0	12	83		0	MS 14	1	1.88		•
1era ayuda		4		0	12	88		0	MS 17	1	% Avance		
epn& epz		4		0	6	*		0	U 2	7	95K	<u> </u>	
cuadradores	1	9		0	6	35		0	194	2	F.de Avance		
Ayuda arrastre	Đ.	† *		0	6	36		0	9 (1	4	(kg/ml)	4	
Ayuda coron		7		0	9	π		0	10.	4	3000		
Hastia				0	7	87		0	8 di	4	36.60		
Corona		\$		0	9	88		0	UP 10	4	% Perforacion		
Arrastre		5		0	6	45		0	LP 12	9	X98	1	
TALADROS PERFORADOS	RADOS	\$	0		×	337	0						The second secon
KILOGRAMOS DE CARGA TOTAL	IGA TOTAL	91.58	Ĩ	KG	91.58	KG	0.00	KG			···········		
												NO:Den dedisas/dwii	THE PROPERTY OF THE PROPERTY O
					20.	POLVORIM						NOTATION OF THE PROPERTY OF TH	AL JOHN CRISTORNE DE NOAMANGA
ELAR II CLOW	EMUU	EMULNOR / EMULEX	A	EN EN	EMULHOR			***	EMULMOR			OPERACIONES DE LA U.P. AND	OPERACIONES DE LA U.P. ANDAYCHAGUA PERFORACION Y VOLADURA-
	300011/2	300011/2×12 o 6511/2×12	1/2×12	3000	1/4 X 12			1000	1000 1 1/4 X 12			Z	ANDAYCHAGUA
Cant/Caj. Expl.		35			æ				35				
#Cajas Expl.		0							1/2			UNIDAD: METRO ESACALA: S/E	/E REALIZADO: JESUS QUISPE Yucra
Unidades		0		ಡ	_				¥			City City City City City City City City	REVISADO: Ing. KATIA CARLOS
		al						L					

PLANO 03 - DISEÑO DE MALLA DE PERFORACIÓN 4.5 X 4.5 m NEGATIVA. 193657

YAULI AREA DE PERFORACION Y VOLADURA - ANDAYCHAGUA HOLESH COMMUNES SHARED STATE Maila de perforacion y Esquema de cargulo 4.5 m x 4.5 m de 11 pies 52 12 Pies 3.66 45 Volumen Roto m3 61.56 Taladros Perforados Long, Barra Ø Broce Prod. (mm) 3.2 **∌** Broca Rimado(mm) 102 **Taladros Cargados** 43 Long, Efectiva 11 pies Kilos de Explosivo 101.62 0.55 RMR 41-50 **ACCESORIOS** Nº DE CARTUCHOS POR TALADRO PERFORACIÓN CON JUMBO KPI E 3000 1.1/2 x 12 E 3000 1.1/4 X 12 E 1000 1.1/4 X 12 Retardo Nº Tal Descripción Cant. fanel* und/tal total/tal und/tal total/tal und/tal total/tal Precorte (Corona) 4 MS1 5 Alivio (Rimados) ------MS9 1 F.de carga (Kg/m3). 4 0 12 48 0 MS 14 1 1.65 Arranque 4 0 12 48 0 MS 17 1 % Avance 1era ayuda 2da avuda 4 0 10 40 0 LP 2 2 95% 4 9 36 0 LP 4 2 cuadradores 32 0 Ayuda hastial 4 0 8 LP 6 4 .de Avence (kg/ml) 3 8 24 0 LP7 4 Ayuda corona 0 4 9 36 0 0 LP 8 4 Ayuda arrastre Hastial 6 0 2 12 4 24 LP 10 7 33.96 5 5 25 Corona 5 LP 12 4 % Perforation 5 ٥ 9 45 0 LP 14 6 86% Arrastre TALADROS PERFORADOS 52 326 49 5 Ò LP 15 KILOGRAMOS DE CARGA TOTAL 101.62 0.00 KG 88.59 KG 13.03 KG LP 16 5 UNIVERSIDAD NACIONAL SAN CRISTOBAL DE HUAMANGA POLVORIN EMULNOR EMULNOR **EMULNOR** OPERACIONES DE LA U.P. ANDAYCHAGUA PERFORACION Y VOLADURA-EMULSION ANDAYCHAGUA 3000 1 1/2 30001 1/4 X 12 1000 1 1/4 X 12 Cant/Caj. Expl. 64 92 94 ESACALA: S/E # Cajas Expl. 0 31/2 0 UNIDAD: METRO REALIZADO: JESUS QUISPE Yucra 46 Unidades 0 **REVISADO: Ing. KATIA CARLOS** PLANO N* 4 Mecha rapida 1m 43 Fanel® 2 Carmex Cordon detonante 70m **AULOGIO**

PLANO 05 - DISEÑO DE MALLA DE PERFORACIÓN 4 X 4 m POSITIVA.

	Źŧ.	AREA	OF PERF	ORACION Y	VOLABURA	area de Perforación y voladura - andaychagua							
		Maila	Malla de perforaci	Acton y Esqu	iema de ca	on y Equema de carpulo 4,0 m x 4.0 m de 11 pies	de 11 pie						
Taladros Perforados	\$	Long, Barra	12 Ples	386		Ø Broce Prod. (mm)	Ą	Volume	Volumen Roto m3	25.82	<u>\</u>	(F	<i>[</i> -
Taladros Cargados	æ	iong. Efectiva	11 ples	22	100	Ø Broce Rimado(mm)	ğ	(Class de	Clos de Explosivo	3	X 850	• • • •	* 50 - * 50 - * 50
					RIMER 51-60	0					//////////////////////////////////////	- - - 1	
PERFORACIÓN CON JUMBO	98		2	Nº DE CARTUCHOS POR TALADRO	HOS POR TA	LADRO		ACC	ACCESORIOS		<u>`</u>	. .	- - -
Descripción		N9 Tal E 3000	E 3000 1.1/2 x 12		E 3000 1.1/4 X 12	E10001.1/4 X 12	n	Retardo	\$	5	9 4.		- ""
			und/tai (total/tai	al und/tal	total/tal	und/tai	total/tal	anel				<u>\</u>	/* •
Precorte (Corona)		4	L			1		MS 1				<u>-</u>	- 40
Alivio (Rimados)		1		:		¥.		NS9		F.de carga (Kg/m3).		-	9 • €
Rompeboca		1.1	٥	12	77		0	1821	1	1.95			人のイ
Arrangue		Ţ	0	12	8		0	MS 14	1		<i>•</i>	-	•
1era ayuda		-	٥	п	\$		0	MS 17	1	% Avance		•	•
2da ayuda			0	2	8		0	LP 2	2	95%		-	
cusdradores		9	٥	6	24		0	(P4	2	E de Brance (beford			_
Ayuda arrastre		•	0	6	ж		0	9 61	7	r.pe Avance (ag/m)			
Ayuda corona		2	٥	9	77		0	(d)	4	8	-	-	•
Hastlal		-	0	7	82		0	89	4	370			
Corona		5	0	9	æ		0	01 41	4	% Perforation		+	+
Arrastre		2	٥	6	8		•	αď	9	% %	<u>}</u>		7:14
TALADROS PERFORADOS	ğ	æ	0		95	0							
KLOGRAMOS DE CARGA TOTAL	-	78.8	ξ	28.82	KG	000	χQ						
***************************************					POLYDRIA						UNIVERSIC	NAD NACIONAL SU	UNIVERSIDAD NACIONAL SAN CRISTOBAL DE HUANANGA
	BAULNOS	EMULNOR / EMULEX		EMULMOR			THE STATE OF	EMUNOR			OPERACIONES DE	LA U.P. ANDAYC	OPERACIONES DE LA LLE, ANDAYCHAGILA PERFORACIONY VOLADURA.
NONTOWN	300011/2×1	300011/2×12 0 65 11/2×12	30001	CH 1/4 X 12			10001	10001 1/4 X 12				ANDA	ANDAYCHAGUA
Cant/Caj. Empl.		25		25				3					
#Cajas Expl.		0		3				1/2			UNIDAD: METRO ESACALA: S/E	ESACALA: S/E	REALIZADO: JESUS QUISPE Yucra
Unidades		0		73			Í	<i>b</i> -			Z	•	REVISADO: Ing. KATIA CARLOS
Mecha rapida 1m	39 Fanel®	age.			2 Carmex			5	Cordon detonante 45m	£3	3	<u> </u>	AULOGIO

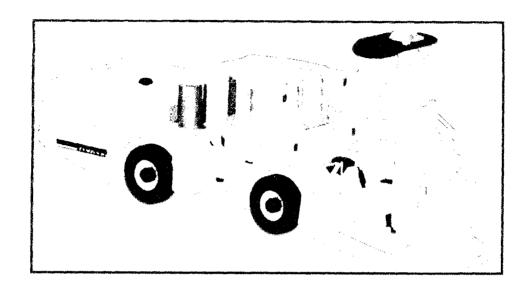
3.4 AGENTES Y ACCESORIOS DE VOLADURA.

La elección del explosivo para una determinada operación requiere una cuidadosa atención tanto de las propiedades de las rocas que se desean fragmentar como de los explosivos disponibles en el mercado. Por ello se han elegido dos tipos de explosivos para el diseño: Semexsa 65% para los taladros de producción y Exadit 45% o en todo caso Semexsa 45%, para los taladros de voladura controlada. Algunas de sus principales características son:

Propiedades Explosivas	Semexsa 65%	Exadit 45%
Potencia por Peso (Trauzl)	75%	69%
Velocidad de Detonación (m/s)	4000	3300
Resistencia al Agua	Muy Buena	Limitada
Categoría de Humos	1ra	1ra
Peso Específico	1.09	0.97
Presión de Detonación (kbar)	80	55
Volumen Normal de Gases (I/kg)	920	890
Dimensiones	1 ½" × 12"	7/8" × 7"

3.5 EQUIPOS DE PERFORACION.

IMAGEN 3.4.1 (A) EQUIPO SD311 SANDVIK Y BOOMER 281 ATLAS


Son equipos de perforación mecanizada se cuenta con jumbos electrohidráulicos de marca:

1.- FRONTONERAS:

- a.- Axera Sandvik
- b.- Boomer Atlas Copco

2.- SOSTENIMIENTO:

a.- Boltec - Atlas Copco

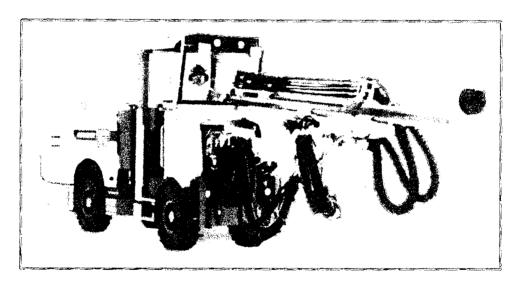
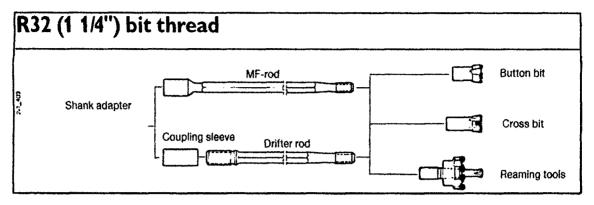
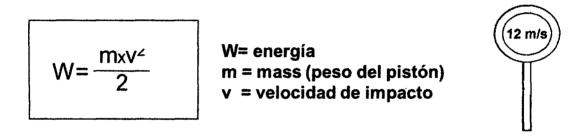


Imagen 03. Equipo Jumbo


Fuente: Catalogo de equipos atlas copco 2011, Master Drillg Atas copco

2015


a) Columna de perforación:

Primer brazo de soporte de fuerza provocado por el perforador accionado por los componentes como el shank, cupling, barra, broca conformando esto la columna de perforación.

Cuando el pistón impacta al shank adapter se crea una onda de choque, que viaja por la sarta de perforación

Imagen 04 .- Componentes de columna de perforacion.

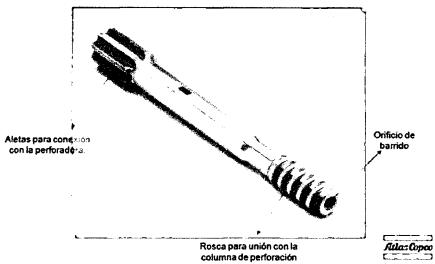
Fuente: Catalogo de Accesorios de perforación Rock Tools Perú 2016.

3.6 DESCRIPCION DE LA COLUMNA DE PERFORACION.

a) Shank.

El shank es el primer elemento en recibir la energía generada por la perforadora.

Cada perforadora tiene un tipo distinto de shank adapter, a su vez, cada aplicación tiene un tipo recomendado de shank adapter.


Actualmente Atlas Copco produce shank adapters para las siguientes marcas de perforadoras:

- SHANK COP 1440 COP 1838 MAGNUM ATLAS COPCO SR35
- Atlas Copco

- Boart
- Furukawa
- Ingersoll Rand
- Tamrock, entre otros.

Shank Adapter (Adaptador de culata)

Shank adapters				Atla	s Cop	oco COI	² 1838
[[] [] [] [] [] [] [] [] [] [Thread	Product No.	Product code	Length (L) mm	Cio (D) cum	Weight approx. kg	Flushing tubo ama
in the second se	T38 (1½")	90516120	435-09101,10	435	38,0	3,8	-

Imagen 05.- Acero - Shank

b) Cupling:

El acople es el segundo elemento de transmisión de energía. Su medida dependerá del tipo de rosca que tengan los elementos a conectar (el shank y la barra, o dos barras de extensión).

Los acoples pueden ser de tipo R y de tipo T. Son tradicionalmente los elementos más débiles de la columna de perforación.

ACOPLE T38 A R38 (7314 – 4455 COUPLING)

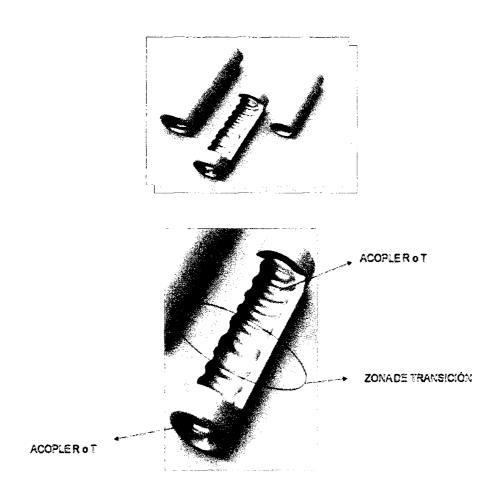
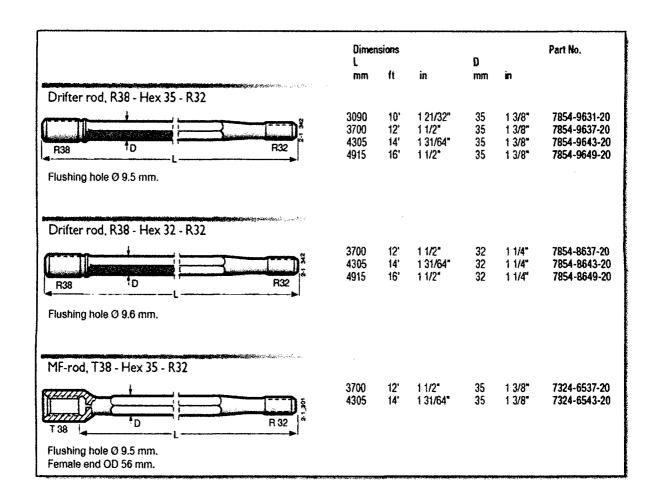



Imagen 06.- Acero - Cupling

Fuente: Catalogo de Accesorios de perforación Rock Tools Perú 2016.

c) Barras:

Las barras vienen reforzados con un incremento de material resistente a la fatiga en la zona de la punta (broca), se logra observar que el cuerpo hexagonal de la barra y el acople (percusión y avance) realizada al momento de rimar (en alta), mejoramos la mejor productividad trabajando con parámetros adecuados, establecidos y capacitación al personal.

Los elementos de prolongación de la sarta son generalmente las barras.

Las primeras son las que se utilizan cuando se perforan con martillo en cabeza y pueden tener sección hexagonal o redonda. Las barras tienen roscas externas trapezoidal y helicoidal.

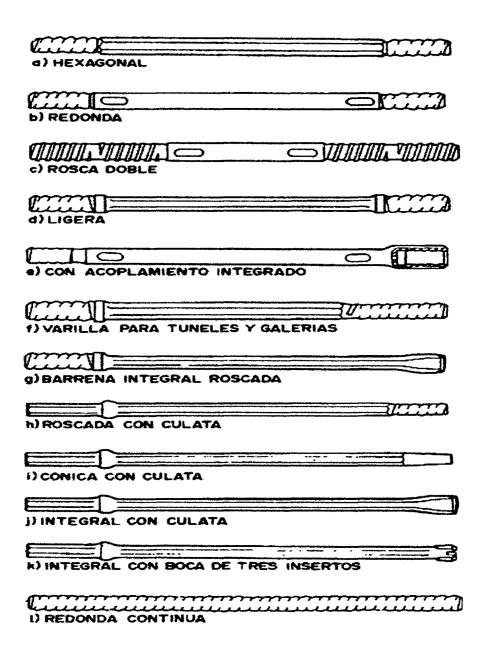
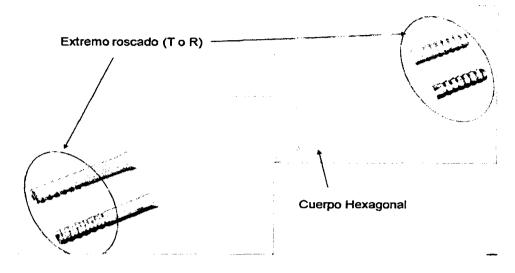



Imagen 07.- Variedad de Barras

Las barras de extensión de sección completa hexagonal o redonda tienen la misma dimensión en el centro de la varilla que en las roscas. El hexágono circunscribe al círculo que corresponde a las similares de sección redonda, por lo que son más rígidas y también un poco más pesadas.

Las barras de extensión ligeras tienen secciones transversales, normalmente hexagonales, menores que las rosca. La designación de este tipo de varillas se refiere a las dimensiones de las roscas.

Barras de extensión normales

Los acoples reciben la energía del shank y lo transmiten a las barras de extensión. Al ser el acople el elemento de unión entre el adaptador y las barras este se convierte en el principal elemento de rotura en la línea de perforación. La rosca de la barra debe de coincidir con la rosca del acople:

- BARRA TUNELERA 14' R38–R32-7854864320 SANDVIK
- BARRA T38 H35-R32 X 14' N/P300012 (7304365201)
 SANDVIK
- BARRA PRODUCTO MAGNUM ATLAS COPCO

d) Broca:

Es el último acero del conjunto que forma la columna del equipo de peroración. Se conoce tres tipos de brocas, y en la unidad de andaychagua solo se trabaja con un tipo de broca que es el común o la ovala y/o redonda.

Para evitar la sobre perforación mayor a 1/3 de diámetro del inserto, en zonas con presencia de caliza, Skarn y Hornfels (dura) con un RMR mayor a 48 es de

8 a 15 taladros por broca, en labores relativamente duras con un RMR mayor a 30 es de 20 taladros y en zonas mineralizadas o zonas alteradas argilizadas con un RMR menor a 30 será de 25 taladros por broca, si se cumple con estas recomendaciones definitivamente estaremos incrementando los rendimientos de toda la columna de perforación y por ende la velocidad de penetración no será variable;

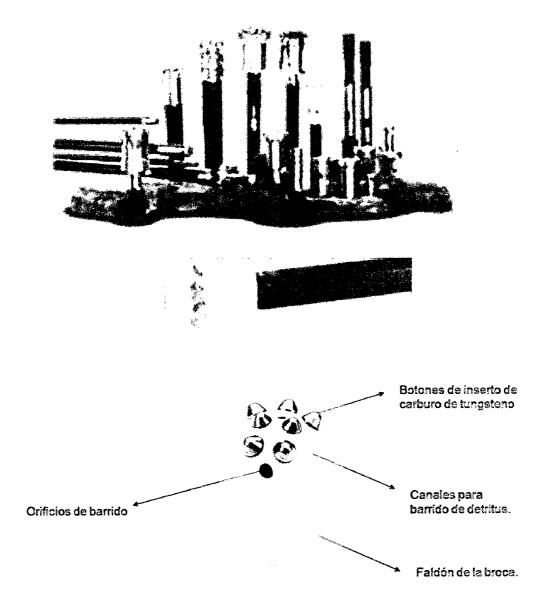


Imagen 08.- Brocas en el mercado

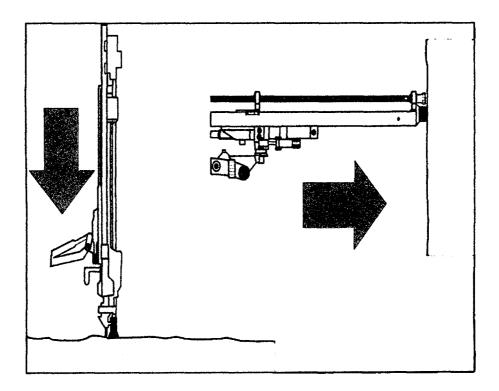
TIPOS, MARCAS Y MODELOS DE BROCAS

- BROCA R32 DE 45 mm
- BROCA PARA JUMBO R25 38 mm RT300N/P7732 5238
 548
- BROCA ESCAREADORA 4" N 7721-4802-S45
- BROCA Y RIMADORA PRODUCTOS MAGNUM ATLAS
 COPCO SR35

Imagen 09.- Brocas a usar por Rock Tools Peru S.A.C.

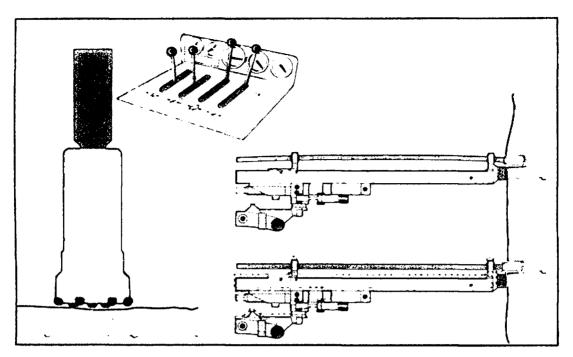
DATOS TECNICOS

	Drill	bit							SR	35 (13/8"
	Dian	neter	Product No.	0-4-4-4	No. of	Buttons × butto	n diameter (mm)	Gauge	Reshin	g hole	Weight
	mm	inch	PTOGUCI NO.	Product code	buttons	Gauge	Centre	buttons angle°	Side	Centre	approx. kg
	BUTTON	BIT - Spher	rical buttons								Control Control Control
()	. 45	134	90513841	128-5045-39,39-20	9	6×10	3x8	30°		3	0,8

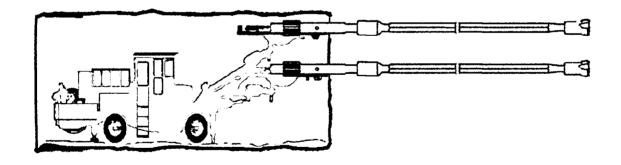

0550 0000		om	e b	its f	or rean	ning					SR	35 (13%")
	Thr	ead	Dia	meter	Product No.	Preduct code	No. of	Buttons × butto	a diameter (mm)	Gauge	Flushi	ng hole	Weight
	William	inch	men	inch	FIDURCI NO.	Lindaricons	buttons	Gauge	Centre	angle	Side	Centre	approx. kg
	DOME	BIT - Spl	erical	buttons									
	SR35	134	102	4	90513850	128-5102-42-24,49-20	17	16×12,7	1×12,7	35°	2	2	3,1

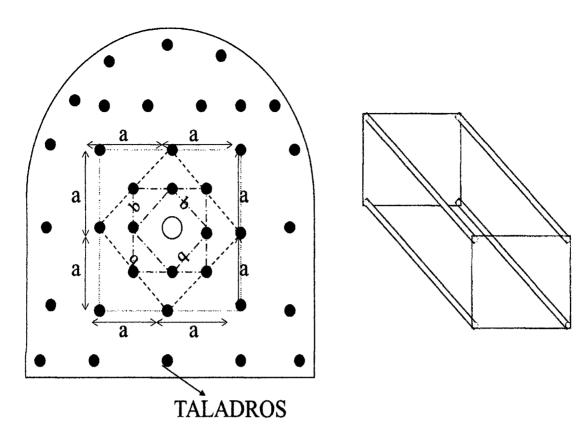
Bits		Plushinghole, mm		Buttons, mm		Dimensions D		Bit	Part No.
Dits	Front No Size	Gauge No Size	front No Size	Gauge No Size	u	mm	ln .	Classifi- cation	·
Transport to the control of							*	*	
3	1x5	2x6	2x9	5x10	35	43	1 11/16*	HMCVA	7733-5243A-S48
390	1x5	2x6	2x9	5x11	30 °	45	1 3/4"	HMCVA	7733-5245A-S48
ALAMA S	1x6	2x7.5	2x9	5x11	35′	48	1 7/8"	HMCVA	7733-5248A-S48
	1x6	2x7.6	2x10	5x12	35	51	2*	HMCVA	7733-5251A-S48
CRESIONELSO AND L									
	2x6	216	2x9	6x9	40°	43	1 11/16"	MSCAN	7733-5443B-R48
	2/6	2x6	2x9	6x10	35	45	1 3/4*	MSCAN	7733-5445B-R48
All Sill in Bank hit in particular									
7 10	3x4.5	1x5	3x8	6x10	25°	45	1 3/4"	HMCAN	7733-5345A-S48
3000	3x4.5	1x5	3x8	6x10	30	45	1 3/4"	MSCAN	7733-5345A-R48
3 60 8	3x5	1x5	3x9	6:10	30	48	1 7/8"	HMCAN	7733-5348A-S48
	3x5	1xō	3x9	6x10	3 0 ⁻	48	1 7/8*	HMCAN	7733-5348A-R48
3 (5 0)									
DY MANAGE TO TO TO	3x6	1x6	3x9	6x10	35*	51	2*	MSCAN	7733-1651A-S48
	3x6	1x6	3x9	6x10	35	51	2"	MSCAN	7733-1651A-R48
								 	

Fuente: Catalogo de Accesorios de perforación Rock Tools Perú 2016.


3.7 CONDICIONES PARA OBTENER UNA VOLADURA.

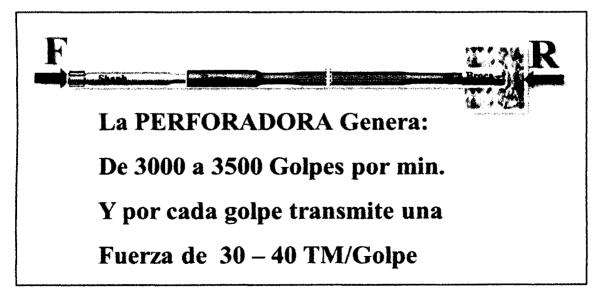
- Simetría de Los Taladros(Malla de Perforación)
- Paralelismo de los Taladros
- Calidad y tipo de Explosivo
- a) Posicionamiento: Consiste en fijar el dowell a la roca de tal forma que no exista movimiento o vibraciones de la viga o brazo del equipo en la perforación.


Fuente: Capacitación Cuidado de Aceros de Perforación Rock Tools Master Drill


b) **Emboquillado**: Iniciar la perforación a media potencia de la máguina.

Fuente: Capacitación Cuidado de Aceros de Perforación Rock Tools Master Drill

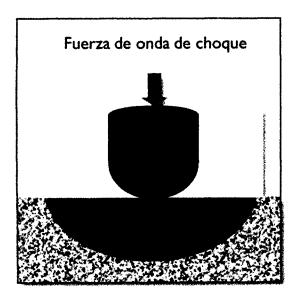
c) Paralelismo:



Fuente: Capacitación Cuidado de Aceros de Perforación Rock Tools Master Drill

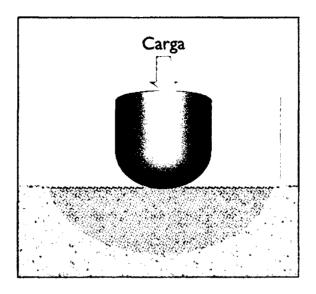
3.8 CAUSAS PARA UNA SOBREPERFORACION.

Cuando la broca se encuentra desgastada está ya no tritura a la roca, y toda la fuerza transmitida por la perforadora retorna causando destrucción de los aceros.

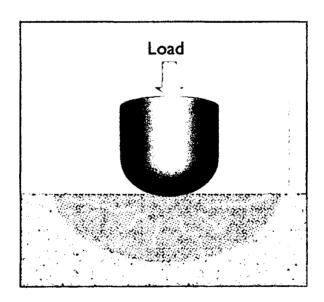

Fuente: Capacitación Cuidado de Aceros de Perforación Rock Tools Master Drill

3.9 MECANICA DE QUEBRADURA DE LA ROCA

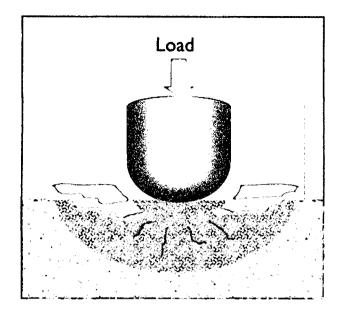
Se Efectúa Cuando una herramienta de perforación se carga contra la roca, se generan esfuerzos en la zona de contacto, donde La forma en que la roca reacciona a estos esfuerzos depende del tipo de roca y de la carga (método de perforación).


- Deformación elástica
- Trituración de la roca
- Formación de grietas
- Chipping

a) Deformación elástica:


Fuente: elaboración Propia.

b) Trituración de la roca:


Fuente: elaboración Propia.

c) Formación de Grietas:

Fuente: elaboración Propia.

d) Chipping:

Fuente: elaboración Propia.

3.10 METODO PRÁCTICO USADO PARA EVALUAR LOS RESULTADOS

En la práctica y en la mayoría de las compañías Mineras, las formas más usadas para evaluar los resultados de las operaciones de perforación y voladura, son a través del método cuantitativo visual, que es el método más usado. Según este método de evaluación que se hace inmediatamente después de haberse efectuado el disparo, es para hacer una apreciación en forma muy general de los resultados del disparo y para contar los pedrones que se puedan ver a primera vista, lo mismo que para observar las proyecciones de las rocas sobre algunas estructuras o equipo minero o una excesiva rotura hacia atrás, sobre perforación, etc.

CAPITULO IV:

EVALUACION DE COLUMNAS DE PERFORACION DE EQUIPOS SANDVIK Y ATLAS COPCO

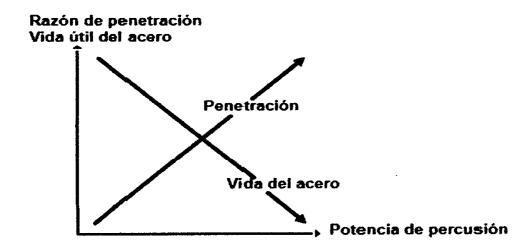
4.1 CICLO DE MINADO MECANIZADO.

Son las operaciones mineras que se ejecuta trabajos con los equipos, Comprende:

Perforación.- Con equipos Jumbos en los avances y Simbas en los tajeos.

Voladura.- explosivos de baja potencia como son: semexsa de 65% y 45%, exadit 45% y los accesorios como es el exel y tecnel no eléctricos, cordón detonante 3P

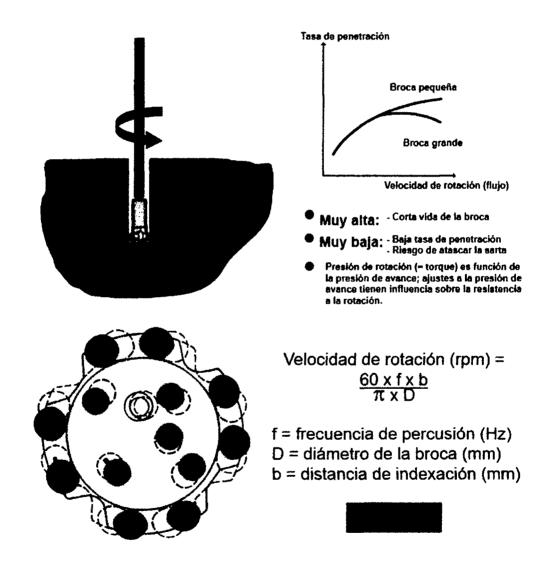
Limpieza.- La limpieza se hace con scoop de 6yd3.


Desate Mecanizado.- Este trabajo se realiza con equipo scaler.

Sostenimiento.- El sostenimiento realizamos con shotcrete y pernos helicoidales.

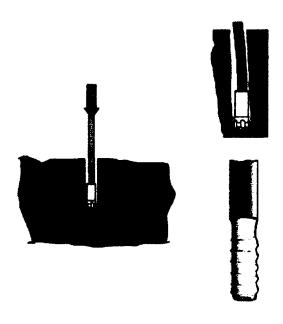
4.1.1. IMPLEMENTACION DE PARAMETROS DE PERFORACION.

A) Percusión.


Los impactos producidos por el golpeo del pistón originan unas ondas de choque que se transmiten a la broca a través del varillaje (en el martillo en cabeza) o directamente sobre ella (en el martillo en fondo). Cuando la onda de choque alcanza la broca de perforación, una parte de la energía se transforma en trabajo haciendo penetrar el útil y el resto se refleja y retrocede a través del varillaje. La percusión en vacío causara la salida de los insertos.

- Muy alta: corta vida útil del acero de perforación
- Muy baja: Pobre penetración
- Bajas presiones son requeridas para:
 - Collaring, empate
 - Desacople
 - Al encontrar roca fracturada y en capas

B) Rotación.

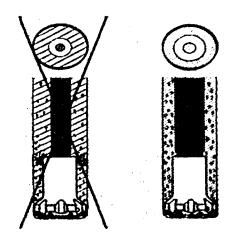

Con este movimiento se hace girar la broca para que los impactos se produzcan sobre la roca en distintas posiciones. En cada tipo de roca existe una velocidad óptima de rotación para la cual se producen los detritus de mayor tamaño al aprovechar la superficie libre del hueco que se crea en cada impacto.

C) Empuje.

Para mantener en contacto el útil de perforación con la roca se ejerce un empuje sobre la sarta de perforación. Un empuje insuficiente tiene los

siguientes efectos negativos reduce la velocidad de penetración, produce un mayor desgaste de varillas y manguitos, aumenta la perdida de apriete de varillaje y el calentamiento del mismo, por el contrario si el empuje es excesivo disminuye también la velocidad de perforación, dificulta el desenroscado del varillaje, aumenta el desgaste de las brocas, el par de rotación y las vibraciones del equipo, así como las desviaciones de los barrenos.

Fuerza muy alta


- · Acero de perforación se dobla
- · Desviación en el agujero

Fuerza muy baja

- · Incremento en el desgaste del hilo
- · Disminución de la vida de servicio

D) Barrido.

El fluido de barrido permite extraer el detrito del fondo del barreno. Si esto no se realiza, se consumirá una gran cantidad de energía en la trituración de esas partículas traduciéndose en desgaste y pérdidas de rendimientos, además del riesgo de atascos.

Remoción de detritos y refrigeración de herrmamientas

Agua, aire o espuma

El espacio entre el agujero y la barra es importante para la velocidad de flujo • espacio grande = baja velocidad

Barrido insuficiente

- · tasa de penetración reducida
- riesgo de atascamiento

Barrido por agua:

Velocidad de barrido: Mínimo 1.0 m/s

Presión mínima de agua: 3 bar

Barrido por aire:

Velocidad de barrido: Mínimo 15 m/s

Barrido mixto aire-agua:

Volumen de agua agregado al aire: 2 - 5 l/min

4.1.2. CALCULO DEL RENDIMIENTO DE ACEROS DE PERFORACION.

El rendimiento de los aceros de perforación sometidos a la prueba fueron realizadas en dos zonas (Zona Baja y Zona Alta):

a.- Rendimiento acumulado de Barra.

RB - TL = ((CONSUMO + 1)/2)*(MPF/CONSUMO).

Objetivo = 3000 mts.

Llegando a una eficiencia de 49.7 % Acumulado hasta la fecha respecto al obietivo.

b.- En cuestión al rendimiento de las brocas

Se viene teniendo problemas debido a que las brocas se tapan constantemente, debido que están perforando en zonas de RMR de 25 -35, terreno suave (panizo) por que el sistema de barrido no ayuda plantando

barras y amarrándose la broca en la rosca de la barra motivo por el cual el personal no desea llevar.

Al mismo tiempo la broca de prueba se fisuro por las aristas de los insertos dejándolo inservible.

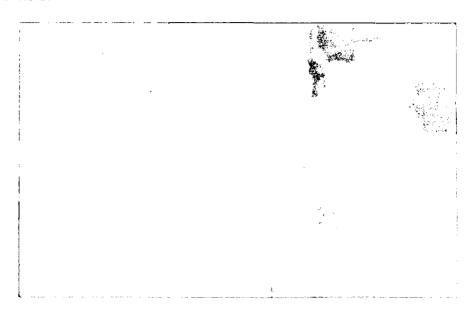


Imagen 11.- Amarre de Aceros: Barra y Broca

Se observa el amarre de la broca con la rosca de la barra siendo consecutivamente.

c.- Roturas Prematuro de shank Modelo (HXL5)

Cuadro 01.- Evaluacion de Roturas Prematuros

EQUIPO	RENDIMIENTO	OBJETIVO	EFICIENCIA
J-130	2528	3500	72%
J-130	2472	3500	71%
J-140	2200	3500	63%
J-140	2261	3500	65%
J-137	1932	3500	55%
PROMEDIO	2278.60	3500	65%

Se observa el corte de los aceros en el cuello de la rosca T38 (marcada en el shank) y se observa que el corte esta en forma de Guillet. La cual perjudica en los rendimientos según nuestro objetivo.

Rotura prematuro de la barras de 8 pies (BARRA R32 HEX28 R28 8')

Cuadro 02.- Descripción de Rotura prematuro de Barras

DESCRIPCION	RNTO	OBSERVACIONES
.00244001784474450 084088 2470474 (4 4	1571	ROTURA R28
UR 23042031 BURRA RSS H28/RSS 61424751111 044	1.5%	BARRIDO DE HILOS/DAMACIADA PERCUCION & AVANCE
N. 2012.00 (84994-930-54992-8) (3473MM) (544	1365	VIDA UTIL
15-28047017 BARRA RB2-H28-R28 8 (2475000) C44	821	BARRIDO DE HILOS/DAMACIADA PERCUCION & AVANCE
16-300/2 <mark>017 8</mark> 4R74 R 32-H28-R28 8 (247 5 V.Y.) 0/4	954	BARRA DOBLADA
17-02032017 BORRA R32-828-R28 & (2475300) 044	233	ROTURA R28/DEMACIADO AVANCE
18-12852017 BARRA R32-H28-R28 8 (2475MM) 065	0	ACTIVO

JASC BIPCION	RENOIMENTO	OBJETIVO	ELKTENCE
BARRA 8 pies	727	2,200	33.04%

Fuente. Elaboración propia.

d.- Control de los aceros de perforación

d.1. FRONTONERO

Cuadro 03.- Control de Shank Frontonero

MES	(Varios elementos)	,X
EQUIPO-COD	DD311 - J 140	ين.

Bilquetes de l'he 🐇 🔻 Suu	nd dé WLP à Shank
(en blanco)	
08-18032017 SHANK HLX5 T38 525 140	3.730
09-04042017 SHANK HLX5 T38 525 140	3.147
10-10042017 SHANK HLX5 T38 525 140	3.789
11-18042017 SHANK HLX5 T38 525 140	3.993
12-26042017 SHANK HLX5 T38 525 140	2.261
13-30042017 SHANK HLX5 T38 525 140	4.941
14-14052017 SHANK HLX5 T38 525 140	4.490
15-26052017 SHANK HLX5 T38 525 140	5.665
16-05062017 SHANK HLX5 T38 525 140	4.483
17-18062017 SHANK HLX5 T38 52 5 14 0	7.180
18-07072017 SHANK HLX5 T38 525 140	6.217
Total general	49.396

Cuadro 04.- Control de Barra Frontonero

MES	(Varios elementos)	V
EQUIPO-COD	DD311 - J 140	. V

Etiquetas de fila	Suma de M.P. x BARRA
(en blanco)	
06-21032017 BARRA TUN R38H32R32 12'140	1.883
07-29032017 BARRA TUN R38H32R32 12'140	4.543
08-09042017 BARRA TUN R38H32R32 12'140	4.240
09-18042017 BARRA TUN R38H32R32 12'140	3.993
10-26042017 BARRA TUN R38H32R32 12'140	4.431
11-06052017 BARRA TUN R38H32R32 12'140	4.240
12-18052017 BARRA TUN R38H32R32 12'140	3.022
13-26052017 BARRA TUN R38H32R32 12'140	5.665
14-09062017 BARRA TUN R38H32R32 12'140	4.483
15-18062017 BARRA TUN R38H32R32 12'140	4.112
16-27062017 BARRA TUN R38H32R32 12'140	3.210
17-08072017 BARRA TUN R38H32R32 12'140	6.075
Total general	49.896

Cuadro 05.- Control de Acople Frontonero

MES	(Varios elementos)	V
EQUIPO-COD	DD311 - J 140	

Etiquetas de fila	Suma de M.P. X COUPLING
(en blanco)	
08 18032017 ACOPLE T38/R38 140-N	3.730
09 04042017 ACOPLE T38/R38 140-N	5.754
10 16042017 ACOPLE T38/R38 140-N	1.182
11 19042017 ACOPLE T38/R38 140-N	3.993
12 26042017 ACOPLE T38/T38 140	2.261
13 30042017 ACOPLE T38/T38 140	4.941
14 14052017 ACOPLE T38/T38 140	4.490
15 26052017 ACOPLE T38/T38 140	5.665
16 09062017 ACOPLE T38/T38 140	4.483
17 18062017 ACOPLE T38/T38 140	4.411
18 26062017 ACOPLE T38/T38 140	2.910
19 08072017 ACOPLE T38/T38 140	6.075
Total general	49.896

d.2. TALADROS LARGOS

Cuadro 06.- Control de Shank T.L.

MES	(Varios elementos)	**
EQUIPO-COD	S7D -J 303	V

Etiquetas de fila	Suma de M.P. x SHANK
(en blanco)	İ
07-17032017-SHANK COP1838 T38 D52-525mm 303	470
08-29032017-SHANK COP1838 T38 D52-525mm 303	1.896
09-12042017-SHANK COP1838 T38 D52-525mm 303	2.006
10-23042017-SHANK COP1838 T38 D52-525mm 303	2.103
11-08052017-SHANK COP1838 T38 D52-525mm 303	2.076
12-22052017-SHANK COP1838 T38 D52-525mm 303	1.749
13-03062017-SHANK COP1838 T38 D52-525mm 303	1.523
14-17062017-SHANK COP1838 T38 D52-525mm 303	3.130
15-06072017-SHANK COP1838 T38 D52-525mm 303	2.031
16-20072017-SHANK COP1838 T38 D52-525mm 303	1.043
Total general	18.025

. Fuente: Elaboración propia.

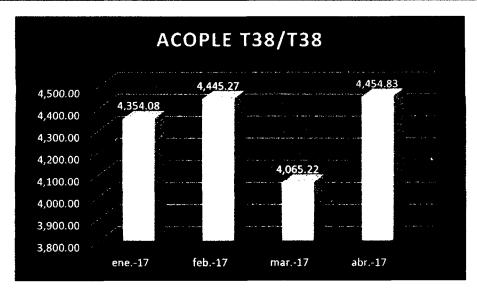
d.3. SOSTENIMIENTO

Cuadro 07.- Control de Shank Sostenimiento

MES	(Varios elementos)	-X]
EQUIPO-COD	ROBOLT - I 129	-₹

Etiquetas de fila	Suma de M.P. x SHANK
(en blanco)	
37-18032017 SHANK HYDRASTAR H200 129	906
38-30032017 SHANK HYDRASTAR H200 129	9 1.410
39-06042017 SHANK HYDRASTAR H200 129	3.092
40-19042017 SHANK HYDRASTAR H200 129	2.366
41-01052017 SHANK HYDRASTAR H200 129	2.669
42-23052017 SHANK HYDRASTAR H200 129	2.989
43-12062017 SHANK HYDRASTAR H200 129	9 1.592
44-21062017 SHANK HYDRASTAR H200 129	9 1.412
45-02072017 SHANK HYDRASTAR H200 129	2.169
Total general	18.606

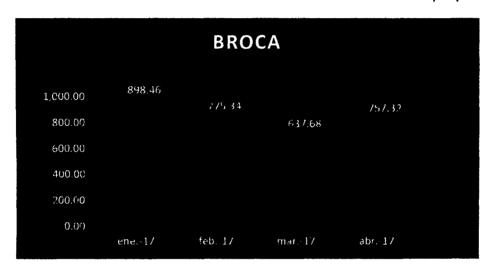
Cuadro 08.- Control de Barra Sostenimiento

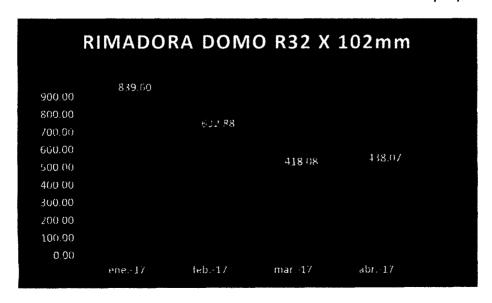

MES	(Varios elementos)	V
EQUIPO-COD	ROBOLT - J 129	V

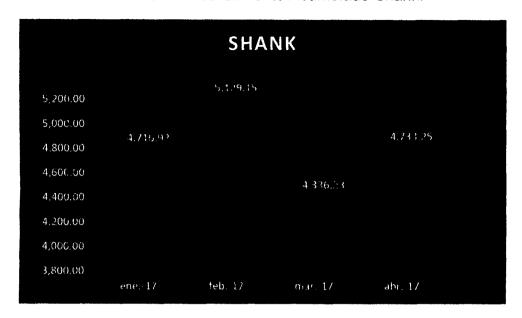
Etiquetas de fila	Suma de M.P. x BARRA
(en blanco)	
06-22032017 BARRA R32-H28-R28 8' (2475MM)129	906
07-30032017 BARRA R32-H28-R28 8' (2475MM)129	9 1.410
08-06042017 BARRA R32-H28-R28 8' (2475MM)129	3.092
09-19042017 BARRA R32-H28-R28 8' (2475MM)129	2.366
10-01052017 BARRA R32-H28-R28 8' (2475MM)129	2.669
11-23052017 BARRA R32-H28-R28 8' (2475MM)129	2.349
12-07062017 BARRA R32-H28-R28 8' (2475MM)129	2.232
13-21062017 BARRA R32-H28-R28 8' (2475MM)129	1.412
14-02072017 BARRA R32-H28-R28 8' (2475MM)129	2.169
Total general	18.606

Fuente: Elaboración propia.

d.4. RENDIMIENTO GENERAL ACUMULADO


RENDIMIENTO ACUMULADO - 2017									
DESCRIPCION	ene17	feb17	mar17	abr17	PROMEDIO				
ACOPLE T38/T38	4,354.08	4,445.27	4,065.22	4,454.83	4,330				
BARRA TUN T38-H35-R32 X 12'	4,354.08	3,333.95	3,252.17	3,442.37	3,596				
BROCA	898.46	775.34	637.68	757.32	767				
RIMADORA DOMO R32 X 102mm	839.60	632.88	418.08	438.07	582				
SHANK	4,716.92	5,129.15	4,336.23	4,733.25	4,729				


Cuadro 09.- Rendimiento Acumulado Acople- Elaboración propia.


Cuadro 10.- Rendimiento Acumulado Barra - Elaboración propia.

Cuadro 11.- Rendimiento Acumulado Broca - Elaboración propia.

Cuadro 12.- Rendimiento Acumulado Shank.

Fuente: Elaboración propia.

4.1.3. ANALISIS DE LOS COSTOS METRO PERFORADO POR ACCESORIOS DE PERFORACION.

Los aceros empleados en la fabricación de estas herramientas deben ser resistentes a la fatiga, a la flexión a los impactos y al desgaste en las roscas y culatas.

Los tratamientos a los que se someten los aceros suelen ser:

Endurecimiento superficial HF (alta frecuencia) calentamiento rápido hasta 900 °C y enfriamiento brusco en agua. Se obtiene una alta resistencia a la fatiga y se aplica en varillas y algunas brocas.

Carburación aumento del contenido de carbono en la superficie del acero introduciendo las piezas durante algunas horas en un horno con una atmosfera gaseosa rica en carbono y a una temperatura de 925 °C. se usa en varillas y en culatas para conseguir un alta resistencia al desgaste.

Bombardeo con perdigones de acero para aumentar la resistencia a la fatiga en los materiales no sometidos a los tratamientos anteriores. Protección frente a la corrosión, mediante fosfatación y aplicación de una fina capa de acero.

En cuanto al metal duro de los botones e insertos la brocas, se fabrica a partir de carburo de tungsteno y cobalto por técnicas de polvometalotecnia. Este material se caracteriza por su alta resistencia al desgaste y tenacidad, y pueden conseguir diferentes combinaciones variando el contenido de cobalto, entre un 6 y un 12% y el tamaño de los granos de carburo de tungsteno. La unión entre el acero y el metal duro se realiza por contracción o presión en frio en caso de las brocas de botones.

RENDIMIENTO PARA EL ANALISIS DE COSTOS

METROS

Cuadro 13.- Rendimiento de Acero por todo los equipos en general – Elaboración propia.

	GEN		RENDIMIENTO	OBJETIVO		
ACCERORIO	RENDIMIENTO (MP)	овепуо	%	P.U. ACEROS (\$/.)	COSTO (\$/MP)	COSTO (\$/MP)
SHANK	6.711	3500	191,74%	250	0,037	0,071
BARRA	3.355	3000	111,85%	355	0,106	0,118
BROCA 51	700	600	116,71%	97	0,139	0,162
RIMAD.	718	350	205,24%	180	0,251	0,514
ACOPLE	4474	3500	127,82%	110	0,025	0,031
				PROMEDIO P.U.	0,111	0,179

	VOI	RENDIMIENTO	OBJETIVO			
ACCERORIO	RENDIMIENTO (MP)	OBIETIVO	%	P.U. ACEROS (\$/.)	COSTO (\$/MP)	COSTO (\$/MP)
SHANK	5.849	3.500	167,12%	250	0,043	0,071
BARRA	2.925	3.000	97,49%	355	0,121	0,118
BROCA	643	600	107,13%	97	0,151	0,162
RIMAD.	540	350	154,22%	180	0,333	0,514
ACOPLE	4.178	3.500	119,37%	110	0,026	0,031
				PROMEDIO P.U.	0,135	0,179

Cuadro 14.- Rendimiento de aceros por equipos de Compañía — Elaboración propia.

	1		RENDIMIENTO	OBJETTVO		
ACCERORIO	RENDIMIENTO (MP)	OBJETIVO	%	P.U. ACEROS (\$/.)	COSTO (\$/MP)	COSTO (\$/MP)
SHANK	11.018	3.500	314,80%	250	0,023	0,071
BARRA	5.509	3.000	183,63%	355	0,064	0,118
BROCA	918	600	153,03%	97	0,106	0,162
RIMAD.	1,429	350	408,15%	180	0,126	0,514
ACOPLE	5509	3.500	157,40%	110	0,020	0,031
				PROMEDIO P.U.	0,068	0,179

Cuadro 15.- Rendimiento de aceros por equipos de IESA — Elaboración propia.

METROS	7. 11. 13. 14. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	10 mm 6 mm 6 m 10 mm 6 mm	

	GEN	RENDIMIENTO	OBJETIVO			
ACCERORIO	RENDIMIENTO (MP)	OVITALBO	%	P.U. ACEROS (\$/.)	COSTO (\$/MP)	COSTO (\$/MP)
SHANK	3.139	2.200	142,68%	250	0,080	0,114
BARRA	1.932	2.200	87,81%	355	0,184	0,161
BROCA	399	350	113,89%	97	0,243	0,277
				PROMEDIO P.U.	0,169	0,184

Cuadro 16.- Rendimiento de Acero por todo los equipos en general — Elaboración propia.

	VOI	RENDIMIENTO	OBJETIVO			
ACCERORIO	RENDIMIENTO (MP)	OBJETIVO	%	P.U. ACEROS (\$/.)	COSTO (\$/MP)	COSTO (\$/MP)
SHANK	2.842	2.200	129,19%	250	0,088	0,114
BARRA	1.895	2.200	86,13%	355	0,187	0,161
BROCA	363	350	103,67%	97	0,267	0,277
				PROMEDIO P.U.	0,181	0,184

Cuadro 17.- Rendimiento de aceros por equipos de Compañía — Elaboración propia.

	16		RENDIMIENTO	OBJETIVO		
ACCERORIO	RENDIMIENTO (MP)	OBJETIVO	%	P.U. ACEROS (\$/.)	COSTO (\$/MP)	COSTO (\$/MP)
SHANK	4.030	2.200	183,16%	250	0,062	0,114
BARRA	2.015	2.200	91,58%	355	0,176	0,161
BROCA	504	350	143,91%	97	0,193	0,277
ACOPLE	2100	2000	105,00%	110	0,052	0,055
				PROMEDIO P.U.	0,121	0,152

Cuadro 18.- Rendimiento de aceros por equipos de IESA — Elaboración propia.

METROS MENSUAL-TALADROS LARGOS

	GEN	RENDIMIENTO	OBJETIVO			
ACCERORIO	RENDIMIENTO (MP)	OBJETIVO	%	P.U. ACEROS (\$/.)	COSTO (\$/MP)	COSTO (\$/MP)
SHANK	1.859	3.800	48,91%	250	0,135	0,066
BARRA		3.000	181,33%	355	0,065	0,118
BROCA		400	214,46%	97	0,113	0,243
				PROMEDIO P.U.	0,104	0,142

Fuente: Elaboración propia.

4.2 EVALUACION DE MARTILLO DE PERFORADOR DE EQUIPOS ATLAS COPCO Y SANDVIK.

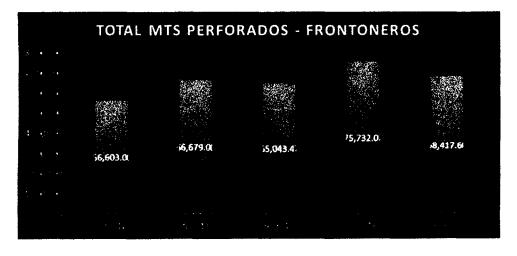
4.2.1. EVALUACION DE COLUMNAS DE PERFORACION DE EQUIPOS ATLAS COPCO Y SANDVIK.

La columna de perforación está conformado por los aceros: Shank, Cupling, Barra y Broca. La evaluación consiste en hacer el control efectivo por guardia a cada uno de los aceros de la columna, y por cada equipo para saber el rendimiento de cada equipo atlas copco y sandvik.

Se debe de saber el tipo de shank para cada equipo tanto atlas copco y sandvik, por lo mismo el cupling con la rosca que dependiente del shank. Del mismo la barra y la broca.

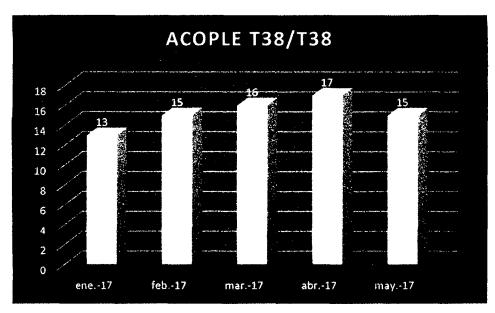
El ciclo de operación en la minería, inicia con la perforación; y la prioridad es el control del buen trabajo de la columna de los equipos de perforación. Para ello se requiere la evaluación de calidad de los aceros de perforación para la

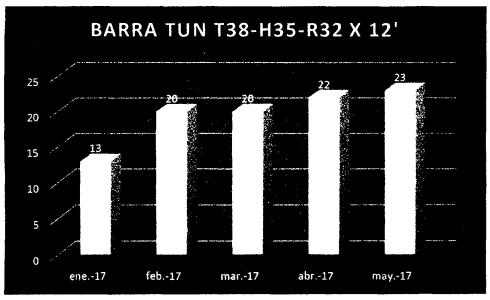
columna completa ya que el mal uso de los aceros por parte de los operadores, tiende a que los aceros no lleguen a su objetivo establecido por el proveedor. La finalidad de la evaluación de columna de equipo de perforación es por el Costo Metro Perforado.

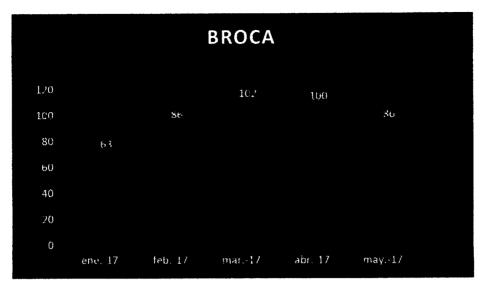

Las brocas siempre hay que tener muy bien afiladas, para el máximo rendimiento de estas. El no afilar las brocas puede hacer que solo rindan un 60% de su vida útil real.

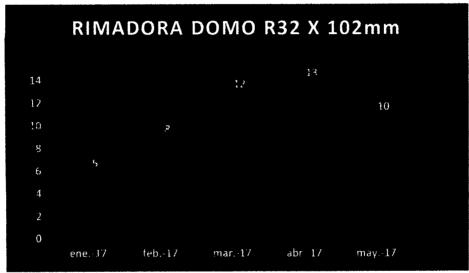
4.2.1.1. Descripción de la productividad de U.P. ANDAYCHAGUA.

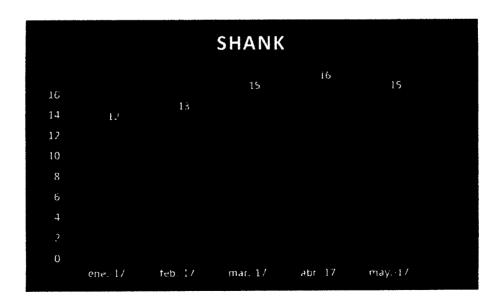
CUADRO 19 – Metros perforados acumulados anual, por equipos atlas


Copco & Sandvik


EQUIPOS		METROS PERFORADOS ACUMULADOS - 2017									
VOLCAN	EQUIPO	ene17	feb-17	mar17	abr17	may17	TOTAL	PROMEDIO			
	DD 311 - J 130	9,589.00	13,078.00	11,705.78	13,678.14	14,638.81	62,689.74	12,537.95			
	DD 311 - J 135	10,886.00	14,313.00	13,154.19	13,380.96	10,224.46	61,958.61	12,391.72			
	DD 311 - J 137	11,887.00	12,160.00	11,287.72	15,079.92	14,994.33	65,408.97	13,081.79			
	DD 311 - J 140	9,747.00	12,907.00	11,656.41	14,658.56	11,626.78	60,595.75	12,119.15			
	S1D - J 145	1,442.00	1,597.00	4,769.88	6,744.80	4,694.16	19,247.84	3,849.57			
	S1D - J 134	13,052.00	12,624.00	12,469.49	12,189.68	12,239.06	62,574.23	12,514.85			
TOTA	AL MITS PERFORADOS	56,603.00	66,679.00	65,043.47	75,732.07	68,417.60	332,475.14	66,495.03			
TOTA	LMETROS RIMADOS	4,197.00	5,063.00	5,017.00	5,694.88	5,415.08	25,386.96	5,077.39			




CUADRO 20 - Consumo acumulado de aceros anual


CONSUMO DE ACEROS ACUMULADOS 2017									
DESCRIPCION	ene17	feb17	mar17	abr17	may17	TOTAL	PROMEDIO		
ACOPLE T38/T38	13	15	16	17	15	76	15		
BARRA TUN T38-H35-R32 X 12'	13	20	20	22	23	98	20		
BROCA	63	86	102	100	86	437	87		
RIMADORA DOMO R32 X 102mm	5	8	12	13	10	48	10		
SHANK	12	13	15	16	15	71	14		

4.2.1.2. CONTROL SEMANAL (TABLAS, GRAFICOS, PLANOS)

						CONTI	ROL DE	INDICA:	DORE
Semana: Fechn:	05/0	9 06/2017	KPI'S OPERA MINA ANDAYCI POC'S POODEN DE						
TABLERO DE CONTROL - VOI	.CAN								
\$ 21.4 × 37 × × × × 1							at the short		
Metros Perforados Jumbos	M2s	SUBE	14,500	15,040.0	15,537.00	14,636.00	i f	15,000.0	288
Vatros Perforados Enpernadores	Mas	SUBE	4,500	4,237.0	4,826.00	5,322.00		5,000.0	100%
Matros Perforados Simba	M±s	SUBE	1,100	1,109.0	1,160.00	839.00		1,250.0	67.
Vetros Perforados de rimado	Mas	SUBE	1,000	1,192.0	1,149.00	1,123.00		1,000.0	1120
Rendimiento Shank	M25	SUBE	3,500	4,248.0	5,132.00	3,659.00	· · · · · · · · · · · · · · · · · · ·	3,500.0	105%
Rendimiento acopte	NGs	SUBE	3,500	3,921.0	4,447.00	4,879.00		3,500.0	12376
Rendimiento Barra 12 pies	Mas Mas	SUBE	3,000	3,328.0	3,336.00	4,879.00		3,000.0	1630
Rendimiento Broca 51 mm	M:s	SUBE	600	728 0	776.00	813.00		600.0	13670
		·					<u> </u>		
Rendimiento Broca Rimadora	Mts	SUBE	300	555.0	633.00	561.00	L	300.0	187%
Rendimiento Shank Sostanimiento	NC3	SUBE	2,000	2,428.0	2,728.00	1,774.00		2,000.0	6905
Rendimiento Barra 8 ples	M≏s	SUBE	1,500	2,1250	2,425.00	2,631.00		2,200.0	12192
Rendimiento Broca 38 mm	M2s	SUBE	350	378.0	412.00	444.00		350.0	127%
		· · · · · · · · · · · · · · · · · · ·	······································	*************************************	•		· · · · · · · · · · · · · · · · · · ·		
Rendimiento Shank	M≋s	SUBE	1,250	2,071.0	2,714.00	839.00		2,500.0	34%
Rendimiento Barra 5 pies	Mas	SUBE	1,788	2,301.0	2,940.00	461.00		4,000 0	1285
Rendimiento Broca 64 mm	Mas	SUBE	350	690.0	678.00	839.00		400.0	215%
Consumo Shank Consumo acopte Consumo Barra Consumo Broca	Und Und Und	BAJA BAJA SUBE SUBE	0.0 0.0 0.0	5.0 4.0 4.0 21.0	1.00 2.00 5.00 16.00	4.00 3.00 3.00 18.00			* *
Consumo Broca Rimadora	Und	SUBE	0.0	1.0	1.00	2.00	·		····
Consumo Bloca Killiagora	Olid	JOBE	0.0	1.0	1.00	2.00	<u> </u>		
Consumo Shank	Und	BAIA	0.0	1,0	1.00	3.00			
Consumo Berre	Und	SUBE	0.0	1.0	1.00	2.00	·		
Consumo Broca	Und	SE MANTIENE	0.0	15.0	8.00	12.00	!		
		TOC IN COLUMN	Ų. <u>Ū</u>		0.00	12.00			
Consumo Shenk	Und	SE MANTIENE	0.0	1.0	0.00	1.00			
Consumo Barra	Und	SUBE	0.0	5.0	3.00	10.00			
Consumo Broca	Und	SE MANTIENE	0.0	4.0	2.00	1.00			
Consumo Rimedora 127mm	Und	BAJA	0.0	0.0	0.00	1.00			
ESA			7						
<u> </u>		 			1				
tatros Perforados Jumbos-IESA	Mis	SUBE	7,000	10,099.0	11,314.0	10,310.0		7,500.0	1370
tatos Perforados Enpernadores	Mts	SUBE	2,000	3,166.0	3,483.0	4,101.0		2.500.0	16475
tetros Perforados de rimado	Mits	SUBE	500	703.0	816.0	764.0		500.0	10376
Rendimiento Shank	Mits	SUBE	3,500	3,870.0	4,614.0	5,155.0		3,500.0	14/6
Rendimiento acopia	Mits	SUBE	3,500	3,483.0	3,845.0	3,437.0		3,500.0	487
Rendimiento Barra 12 pies	Mts	SUBE	3,000	3,163.0	3,296.0	3,437.0		3,000.0	11 925
Rendimiento Broca 45 mm	Mts	SUBE	600	792.0	887.0	937.0		0.000	10618
Rendimiento Broca Rimadora	Mts	SUBE	300	356.0	368 0	382.0	LL	300.0	12/%
Rendimiento Shank Sostenimiento	Mts	SUBE	2,000	3,684.0	3,632.0	4,101.0		2,000.0	2050
Rendimiento Barra 8 pies	Mts	SUBE	2,000	2,763.0	2,076.0	2,050.0		2,2000	43 1a
Rendimiento Broco 38 mm	Mts	SUBE	300	368.0	363.0	315.0		350.0	60ts
Consumo Shank	Und	BAJA	0.0	3.0	1.0	2.0	<u> </u>		
Consumo acopie	Und	BAJA	0.0	2.0	2.0	3.0			
Consumo Borra	Und	BAJA	0.0	3.0	3.0	3.0			
Consumo Broca	Und	BAJA	0.0	12.0	8.0	11.0			
onsumo Broca Rimadora	Und	BAJA	0.0	4.0	2.0	2.0			
Charles Charles		I summer	- 72	4.	7-140				
onsumo Shank onsumo Barra	Und	SUBE	0.0	1.0 2.0	1.0 3.0	0.0 2.0	i		
OIMUIN Dalla	Und	BAJA BAJA	0.0	10.0	10.0	13.0	L		

Cuadro 21 - Control de Indicadores Operacionales KPI.

Fuente: Área De Perforación y Voladura Mina Andaychagua

4.2.2. EVALUACION DE RPM DE EQUIPOS DE PERFORACION.

4.2.2.1. REGISTRO ESTADISTICO DE LOS TIEMPOS DE PERFORACIÓN

BROCA	AS ESFERICA	50MM	
ITEMS	MINUTOS	SEGUNDOS	
01	1	27	
02	1	35	
03	1	23	
04	1	33	
05	1	14	ŀ
06	1	45	
07	1	16	
08	1	29	
09	1	32	

BROCAS ESFERICAS 51MM									
ITEMS	MINUTOS	SEGUNDOS							
01	1	42							
02	1	38							
03	1	31							
04	2	12							
05	1	50							
06	1	36							
07	1	45							
08	1	32							
09	1	24							
10	1	29							

Fuente: Elaboración Propia

4.2.2.2. REGISTRO DE DESCARTE DE LAS BROCAS 4.2.2.3.

PRUEBA N° 01 - BROCA DE 50MM

FECHA	GUARDI A	EQUIPO	OPERADOR	NIVEL	LABOR	GSI	RMR	TAL.	LONG. (PIES)	PIES PERF.	MTS. PERF.	OBS.	DIAMETRO DE LA	MATERIAL
22/02/2017	DIA	J_130	CHUCOS	1150	RP_662	IF/R-P	21-30	20	10,80	216,00	65,84	5E	50MM	DESMONTE
25/02/2017	NOCHE	J-135	CUADROS	1225	TJ_242	IF/R	31-35	19	10,80	205,20	62,54	DESCATA	49.2MM	MINERAL
27/02/2017	NOCHE	J-135	CUADROS	1200	TJ_331A	MF/R	25-30	20	10,80	216,00	65,84	LA BRO	48.40MM	MINERAL
28/02/2017	DIA	J_140	ARIAS	800	RP_8	MF/R	25-30	15	10,80	162,00	49,38	CA POR	47.0MM	DESMONTE
28/02/2017	NOCHE	J-135	CUADROS	1225	TJ_242	MF/R	45-55	15	10,80	162,00	49,38	DIAMETR	46.8MM	MINERAL
01/03/2017	NOCHE	J_137	PAREDES	1200	TJ_331A	MF/R	45-55	20	10,80	216,00	65,84	0	46.2MM	MINERAL
							•	TC	TAL	1.177,20	358,81			

PRUEBA N° 02 - BROCA DE 50MM

								_						
FECHA	GUARDI	FOLLIBO	OPERADOR	NIVEL	LABOR	GSI	RMR	TAL.	LONG.	PIES	MTS.	OBS.	DIAMETRO	MATERIAL
recha	Α	EQUIFO	OFERADOR	THEFT	DADOR	051	MAN	int.	(PIES)	PERF.	PERF.	003.	DE LA	III/AFEIII/AE
22/02/2017	DIA	J_130	CHUCOS	1150	RP_661	IF/R-P	21-30	19	10,80	205,20	62,54	SE	50MM	DESMONTE
25/02/2017	NOCHE	J-135	CUADROS	1225	TJ_243	IF/R	31-35	20	10,80	216,00	65,84	DESCATA	49.2MM	MINERAL
27/02/2017	NOCHE	J-135	CUADROS	1200	TJ_131A	MF/R	25-30	20	10,80	216,00	65,84	LA BRO	47.6MM	MINERAL
28/02/2017	DIA	J_140	ARIAS	800	AC_023	MF/R	25-30	20	10,80	215,00	65,84	CA POR	47.1MM	DESMONTE
28/02/2017	NOCHE	J-135	CUADROS	1225	TJ_242	MF/R	45-55	14	10,80	151,20	46,09	DIAMETR	46.6MM	MINERAL
01/03/2017	NOCHE	J_137	PARDES	1200	TJ_131A	MF/R	45-55	22	10,80	237,60	72,42	0	45.8MM	
								TO	TAL	1.242,00	378,56	1		

I. BROCA DE 48 MM-PRUEBA N° 02

	igas elde. E 1 mark				X	. p	Alv.S		asar l	The orange	are j		57 . S 45	
09/03/2017	NOCHE	J-135	SALOME	1170	CM_4	IF/R-P	21-30	21	10,80	226,80	69,13		48	DESMONTE
09/03/2017	NOCHE	J-135	SALOME	1150	RP_661	IF/R	31-35	24	10,80	259,20	79,00]	47,9	MINERAL
10/03/2017	NOCHE	J-135	SALOME	1225	CA_131	MF/R	25-30	26	10,80	280,80	85,59]	46,9	MINERAL
10/03/2017	NOCHE	J-135	SALOME	1225	AC_143	MF/R	25-30	24	10,80	259,20	79,00	DESCART	46,9	DESMONTE
11/03/2017	NOCHE	J-135	SALOME	1225	AC_235	MF/R	45-55	20	10,80	216,00	65,84	ADO POR	44,9	MINERAL
11/03/2017	NOCHE	J-135	SALOME	1225	AC_131	MF/R	45-55	26	10,80	280,80	85,59	DIAMETR	44,9	MINERAL
12/03/2017	NOCHE	J-135	SALOME	1225	AC_131	MF/R	45-55	28	10,80	302,40	92,17	1	44,1	DESMONTE
12/03/2017	NOCHE	J-135	SALOME	1170	CM_6	IF/R-P	21-30	17	10,80	183,60	55,96	ODELA	44,1	DESMONTE
13/03/2017	NOCHE	J-135	SALOME	1225	AC_135	MF/R	25-30	35	10,80	378,00	115,21	BROCA	43,7	DESMONTE
13/03/2017	NOCHE	J-135	SALOME	1225	AC_123	IF/R-P	21-30	20	10,80	216,00	65,84]	43,7	DESMONTE
14/03/2017	NOCHE	J-135	SALOME	1150	AC_151B	IF/R	31-35	30	10,80	324,00	98,76]	42,1	DESMONTE
26/03/2017	DIA	J-135	SALOME	1170	CM_6	IF/R-P	21-30	19	10,80	205,20	62,54]	41,7	DESMONTE
								TO	TAL	3.132,00	954,63	Ĺ		

Fuente: Elaboración Propia

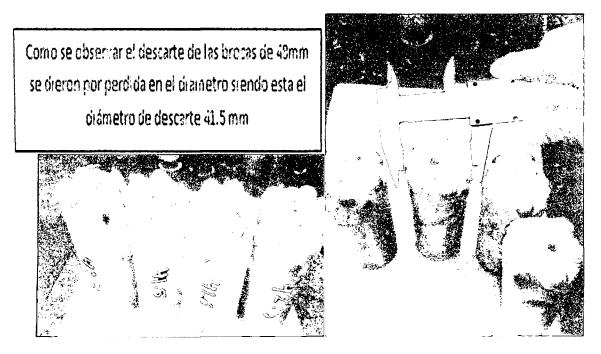
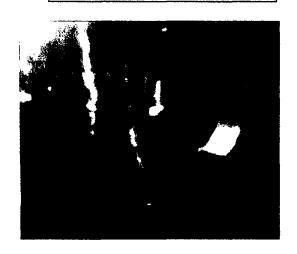


Imagen 12.- Medición de los diámetros de las brocas descartadas

4.2.2.4. REGISTRO DE EVALUACION DE RPM


Equip	Marca	Martillo	Percu sión		Pre. Agua	Rpm	Broca
J-137	Sand vik	HLX5	170	80	12	180	45-51 mm

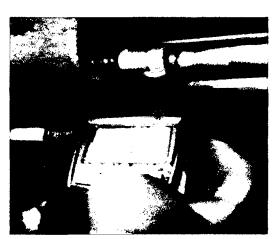


Imagen 13.- Evaluación de los parámetros en el equipo

Equipo J-129 con centralizador desgastado

Equipo J-41 rpm elevados

Equipo J-129 y J-41 generaron roturas prematuras, debido a que sus rpm estaban fuera del rango y que los centralizadores se encontraban desgastados.

Imagen 14.- Muestra de Rotura de las Barras

Equipo J-134, tuvo problemas operativos en dos oportunidades plantando barra perjudicando el rendimiento.



Imagen 15.- Muestra de Plantado de Barra en la perforación.

CONSUMOS DURANTE LA SEMANA 14. FRONTONEROS

Suma de CANTICAD	Eti	quetas de columna,	-							
Etiquetas de fila		DD311 - J 130	DD311 - J 135	DD311 - / 137	DD311 - J 14	0 S1D-J 145 i	FSA 1-036 S10	- 1134 IES/	43-043 To	tal gene
ACOPLETED/T23	T	-1	-1		-1	-1				-4
BARRA TUN TES-HES-R32 X 12'	- 1		-1	-1		-2	-1	٥		٠5
EROCA R32 X 45mm ESF			-5	-1	-1	-1	-5			-13
BROCA R32 X 51mm ESF	- 1	-1		-2		-2		-1	-2	-£
RIMADORA DOMO R32 X 102mm	ŀ						-1			-1
SHANK COP1833 TSB 455MM	ŀ					-1		-1		-2
SHANK HIXS T39 500mm		-1	-1		-1					3
Total general		-3	-8	-4	-3	-7	-7	-2	-2	- 36

CONSUMOS DURANTE LA SEMANA 14. SOSTENIMIENTO

Suma de CANTIDAD	Etiquetas de columna 💌						
Etiquetas de fila	ROBOLT - J 129	ROBOLT	I 13 ROBOLT - J	13 ROBOLT -	J 13 IESA J-044	IESA 1-041	Total gene
BARRA R32 HEX28 R28 8' (2400mm)	}					-1	-1
BARRA R32 HEX28 R28 8' (2475mm)	-1	-1	0		-1		-3
BROCA R28 X 37mm			2	-2	· 1	-3	-8
BROCA R28 X 38mm		-1	-4	-2	-2	~2	-11
SHANK HIDRASTAR H200 R32 FEMALE	-1	-1					-2
SHANK MONTABERT HC40/50, R32 HEMBRA	1				-1	-1	-2
Total general	-2	-3	-6	-4	-5	-7	-27

4.2.3. CUADRO COMPARATIVO DE PARAMETRO Y FACTORES.

METROS

GENERAL									
ACCERORIO	RENDIMIENTO	OBJETIVO	%						
SHANK	6.711	3500	191,74%						
BARRA	3.355	3000	111,85%						
BROCA 51	700	600	116,71%						
RIMAD.	718	350	205,24%						
ACOPLE	4474	3500	127,82%						

	VOLCAN	1			IESA		
ACCERORIO	RENDIMIENTO	OBJETIVO	%	ACCERORIO	RENDIMIENTO	OBJETIVO	%
SHANK	5.849	3.500	167,12%	SHANK	11.018	3.500	314,80%
BARRA	2.925	3.000	97,49%	BARRA	5.509	3.000	183,63%
BROCA	643	600	107,13%	BROCA	918	600	153,03%
RIMAD.	540	350	154,22%	RIMAD.	1.429	350	408, 15%
ACOPLE	4.178	3.500	119,37%	ACOPLE	5509	3.500	157,40%

METROS MARIANTA SOS LINEY LA CO

GENERAL									
ACCERORIO	RENDIMIENTO	OBJETIVO	%						
SHANK	3.139	2.200	142,68%						
BARRA	1.932	2.200	87,81%						
BROCA	399	350	113,89%						

VOLCAN									
ACCERORIO	RENDIMIENTO	OBJETIVO	%						
SHANK	2.842	2.200	129,19%						
BARRA	1.895	2.200	86,13%						
BROCA	363	350	103,67%						

	IESA		
ACCERORIO	RENDIMIENTO	OBJETIVO	%
SHANK	4.030	2.200	183,16%
BARRA	2.015	2.200	91,58%
BROCA	504	350	143,91%
ACOPLE	2700	2000	135,00%

METROS MARASA AL MARALA MASA ANTONS

GENERAL									
ACCERORIO	RENDIMIENTO	OBJETIVO	%						
SHANK	1.859	3.800	48,91%						
BARRA	5.440	3.000	181,33%						
BROCA	858	400	214,46%						

Cuadro 27.- Comparativos de Metros perforados en el campo y el objetivo trazado por la empresa

Fuente: elaboración propia

4.2.4. RESUMEN DE LOS COSTOS DE PRODUCCION USANDO EQUIPOS ATLAS COPCO Y SANDVIK.

Fuente: Área De Perforación y Voladura Mina Andaychagua

EQUIPOS		METROS PERFORADOS ACUMULADOS - 2017														
VOLCAN	EQUIPO	ene17	CMP	feb17	CMP	mar17	CMP	abr17	CMP	may17	CNEP	TOTAL	P.U	PROMEDIO		CMP
	DD 311 - J 130	9,589.00	3,308.21	13,078.00	4,511.91	11,705.78	4,038.50	13,678.14	4,718.96	14,638.81	5,050.39	79,267.31	0.345	8,807.48	\$	27,347.22
EQUIPOS	DD 311 - J 135	10,886.00	3,755.67	14,313.00	4,937.99	13,154.19	4,538.20	13,380.96	4,616.43	10,224.46	3,527.44	79,806.90	0.345	8,867.43	\$	27,533.38
SANDVIK	DD 311 - J 137	11,887.00	4,101.02	12,160.00	4,195.20	11,287.72	3,894.26	15,079.92	5,202.57	14,994.33	5,173.04	82,802.02	0.345	9,200.22	\$	28,566.70
	DD 311 - J 140	9,747.00	3,362.72	12,907.00	4,452.92	11,656.41	4,021.46	14,658.56	5,057.20	11,626.78	4,011.24	77,490.04	0.345	8,610.00	\$	26,734.06
ATLAS	S1D - J 145	1,442.00	421,06	1,597.00	466.32	4,769.88	1,392.80	6,744.80	1,969.48	4,694.16	1,370.70	23,497.51	0.292	2,610.83	\$	6,861.27
COPCO	S1D - J 134	13,052.00	3,811.18	12,624.00	3,686.21	12,469.49	3,641.09	12,189.68	3,559.39	12,239.06	3,573.81	77,272.11	0.292	8,585.79	\$	22,563.45
TOTAL	MTS PERFORADOS	56,603.00	\$18,759.85	66,679.00	\$ 22,250.54	65,043.47	¢11 516 21	75,732.07	\$25,124.04	68,417.60	CTO 70C C1	420,135.88	ACUMULA	DO HASTA LA	,	120 COC 00
TOTAL	METROS RIMADOS	4,197.00	\$10,739.63	5,063.00	\$ 44,630.34	5,017.00	\$21,526.31	5,694.88	\$£3,124.U4	5,415.08	\$22,706.61	25,386.96		CHA	Þ	139,606.09

Costos Generados en perforacion de Frentes teniendo equipos Atlas Copco

EQUIPOS		METROS PERFORADOS ACUMULADOS - 2017														
VOLCAN	EQUIPO	ene17	CIMP	feb17	CMP	mar17	CMP	abr17	CMP	may17	CIMP	TOTAL	P.U	PROMEDIO	CMF	
	S1D - 1 001	9,589.00	2,799.99	13,078.00	3,818.78	11,705.78	3,418.09	13,678.14	3,994.02	14,638.81	4,274.53	76,720.61	0.292	8,524.51	\$	22,402.42
	S1D - J 002	10,886.00	3,178.71	14,313.00	4,179.40	13,154.19	3,841.02	13,380.96	3,907.24	10,224.46	2,985.54	77,064.99	0.292	8,562.78	\$	22,502.98
ATLAS	510-1003	11,887.00	3,471.00	12,160.00	3,550.72	11,287.72	3,296.01	15,079.92	4,403.34	14,994.33	4,378.34	80,130.04	0.292	8,903.34	\$	23,397.97
COPCO	S1D-1004	9,747.00	2,846.12	12,907.00	3,768.84	11,656.41	3,403.67	14,658.56	4,280.30	11,626.78	3,395.02	74,894.69	0.292	8,321.63	\$	21,869.25
	S1D - J 145	1,442.00	421.06	1,597.00	466.32	4,769.88	1,392.80	6,744.80	1,969.48	4,694.16	1,370.70	23,497.51	0.292	2,610.83	\$	6,861.27
	S1D - J 134	13,052.00	3,811.18	12,624.00	3,686.21	12,469.49	3,641.09	12,189.68	3,559.39	12,239.06	3,573.81	77,272.11	0.292	8,585.79	\$	22,563.45
TOTAL	VITS PERFORADOS	56,603.00	\$16,528.08	66,679.00	\$ 19,470.27	65,043.47	\$18,992.69	75,732.07	\$22,113.76	68,417.60	Ć10 077 04	409,579.94	ACUMULA	DO HASTA LA	è	110 007 24
TOTAL	VIETROS RIMADOS	4,197.00	310,320,00	5,063.00	3 15,410.ZI	5,017.00	310,332.03	5,694.88	344,113.70	5,415.08	\$19,977.94	25,386.96	FE	CHA	,	119,597.34

COSTO AHORRADO MENSUAL	\$2,231.78	\$2,780.27	\$2,533.62	\$3,010.27	\$2,728.67
COSTO AHORRADO ACUMULADO	\$ 20,008.75				

Fuente: Área De Perforación y Voladura Mina Andaychagua. equipos de Sostenimiento.

Cuadro

Analisis de

las valorizaciones acumuladas 2017

		METROS PERFORADOS ACUMULADOS - 2017 SOSTENIMIENTO													
EQUIPOS VOLCAN	EQUIPO	ene17	CMP	feb17	CMP	mar17		CMP	abr17		CMP	TOTAL	P.U	Π	CMP
	ROBOLT - J 129	3,655.00	\$ 1,991.98	5,628.00	\$ 1,085.63	5,261.76	\$	2,867.66	6,649.82	\$	3,624.15	27,139.85	0.55	\$	14,791.22
TOURDOC CANDVIN	ROBOLT - J 131	4,756.00	\$ 2,592.02	5,450.00	\$ 1,412.65	5,596.43	\$	3,050.06	5,071.57	\$	2,764.00	27,928.73	0.55	\$	15,221.16
EQUIPOS SANDVIK	ROBOLT - J 138	4,866.00	\$ 2,651.97	5,735.00	\$ 1,445.32	4,876.19	\$	2,657.52	5,221.22	\$	2,845.57	27,453.23	0.55	\$	14,962.01
	ROBOLT - J 139	4,919.00	\$ 2,680.86	4,979.00	\$ 1,461.07	4,464.10	\$	2,432.93	5,272.43	\$	2,873.47	26,209.39	0.55	\$	14,284.12
ATLAS COPCO	IESA J-041	5,925.00	\$ 2,215.95	6,520.00	\$ 828.77	6,249.01	\$	2,337.13	7,798.61	\$	2,916.68	31,874.47	0.374	\$	11,921.05
TOTAL MTS PE	RFORADOS	24,121.00	\$ 12,132.77	28,312.00	\$ 6,233.43	26,447.50	\$	13,345.30	30,013.66	\$	15,023.88	140,605.66	TOTAL	\$	71,179.55

Costos Generados en perforacion de Sotenimiento teniendo equipos Atlas Copco

-		METROS PERFORADOS ACUMULADOS - 2017 SOSTENIMIENTO														
EQUIPOS VOLCAN	EQUIPO	ene17		CMP	feb17		CMP	mar17		CMP	abr17		CMP	TOTAL	P.U	СМР
	AT-001	3,655.00	\$	1,366.97	5,628.00	\$	511.25	5,261.76	\$	1,967.90	6,649.82	\$	2,487.03	25,040.70	0.374	\$ 9,365.22
	AT - 002	4,756.00	\$	1,778.74	5,450.00	\$	665.25	5,596.43	\$	2,093.07	5,071.57	\$	1,896.77	25,411.06	0.374	\$ 9,503.74
ATLAS COPCO	AT - 003	4,866.00	\$	1,819.88	5,735.00	\$	680.64	4,876.19	\$	1,823.70	5,221.22	\$	1,952.74	25,022.63	0.374	\$ 9,358.46
	AT - 004	4,919.00	\$	1,839.71	4,979.00	\$	688.05	4,464.10	\$	1,669.57	5,272.43	\$	1,971.89	23,831.86	0.374	\$ 8,913.12
	IESA J-041	5,925.00	\$	2,215.95	6,520.00	\$	828.77	6,249.01	\$	2,337.13	7,798.61	\$	2,916.68	31,874.47	0.374	\$ 11,921.05
TOTAL MTS PER	RFORADOS	24,121.00	\$	9,021.25	28,312.00	\$	3,373.95	26,447.50	\$	9,891.36	30,013.66	\$	11,225.11	131,180.72	TOTAL	\$ 49,061.59

COSTO AHORADO MENSUAL	\$3,111.52	\$2,859.48	\$3,453.94	\$3,798.77
COSTO AHORADO ACUMULADO	\$ 22,117.96			

CUADRO 30: AHORRO EN COSTO DE PERFORACIÓN USANDO EQUIPOS ATLAS COPCO

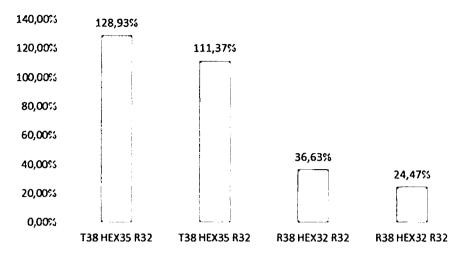
CMP FRONTONEROZ - AHORRADO	20008.75
CMP SOSTENIMIENTO - AHORRADO	22117.96
AHORRO TOTAL	\$ 42,126.71

Se observa que al realizar la comparación de valorización mensual en la producción, entre las columnas de perforación entre ambos equipos, se observa que se tiene un ahorro de 42 126. 71 USS.

CAPITULO V

RESULTADOS Y DISCUSIONES

5.1. RESULTADOS

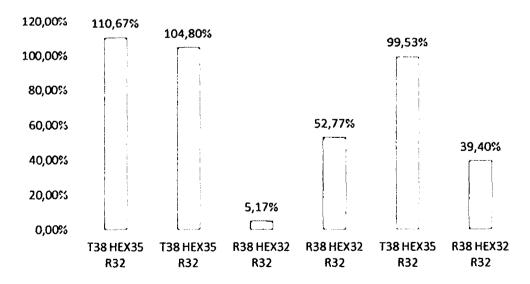

En los siguientes cuadros se muestra el rendimiento y consumo de estos aceros en todos los equipos de Volcan a los que se entregó esta barra BOARD

5.1.1. EQUIPOS SANDVIK

1. Equipo J-135

ITEMS	FECHA DE ENTREGA	FECHA DE ROTURA	EQUIPO	BARRA	RENDIMIENTO	OBJETIVO NORMAL	EFICIENCIA	OBSERVACIONES
1	04/08/2016	14/08/2016	J-135	T38 HEX35 R32	3868	3000	128.93%	
2	14/08/2016	21/08/2016	J-135	T38 HEX35 R32	3341	3000	111.37%	
3	21/08/2016	23/08/2016	J-135	R38 HEX32 R32	1099	3000	36.63%	ROTURA CERCA A LA ROSCA R32
4	23/08/2016	25/08/2016	J-135	R38 HEX32 R32	734	3000	24.47%	DOBLADO DE BARRA

EFICIENCIA DE BARRAS J-135

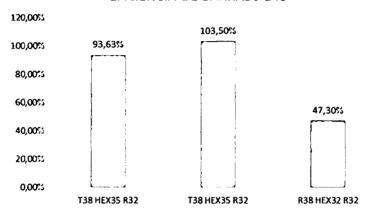


Cuadro 30.- Eficiencia de Barra en Equipo J-135

2. Equipo J-137

ITEMS	FECHA DE ENTREGA	FECHA DE ROTURA	EQUIPO	BARRA	RENDIMIENTO	OBJETIVO NORMAL	EFICIENCIA	OBSERVACIONES
1	02/08/2016	11/08/2016	J-137	T38 HEX35 R32	3320	3000	110.67%	
2	11/08/2016	18/08/2016	J-137	T38 HEX35 R32	3144	3000	104.80%	
3	18/08/2016	18/08/2016	J-137	R38 HEX32 R32	155	3000	5.17%	DOBLADO DE BARRA
4	18/08/2016	23/08/2016	J-137	R38 HEX32 R32	1583	3000	52.77%	DOBLADO DE BARRA
5	23/08/2016	29/08/2016	J-137	T38 HEX35 R32	2986	3000	99.53%	
6	29/08/2016	01/08/2016	J-137	R38 HEX32 R32	1182	3000	39.40%	DOBLADO DE BARRA

EFICIECIA DE BARRAS J-137

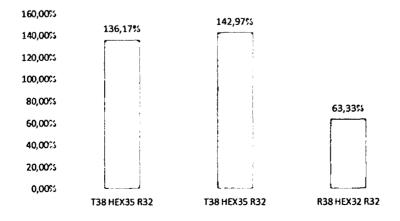

Cuadro 31.- Eficiencia de Barra en Equipo J-137

5.1.2. EQUIPOS ATLAS COPCO

1. Equipo J-145

ITEMS	FECHA DE ENTREGA	FECHA DE ROTURA	EQUIPO	BARRA	RENDIMIENTO	OBJETIVO NORMAL	EFICIENCIA	OBSERVACIONES
1	31/07/2016	15/08/2016	J-145	T38 HEX35 R32	2809	3000	93.63%	
2	15/08/2016	28/08/2016	J-145	T38 HEX35 R32	3105	3000	103.50%	
3	28/08/2016	04/09/2016	J-145	R38 HEX32 R32	1419	3000	47.30%	DOBLADO DE BARRA

EFICIENCIA DE BARRAS J-145

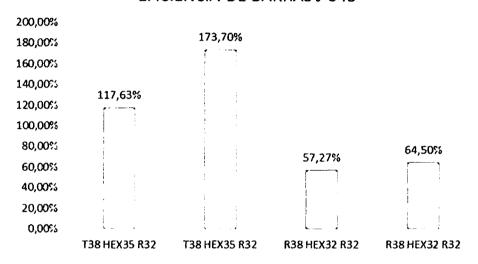


Cuadro 31.- Eficiencia de Barra en Equipo J-145

2. Equipo J-134

ITEMS	FECHA DE ENTREGA	FECHA DE ROTURA	EQUIPO	BARRA	RENDIMIENTO	OBJETIVO NORMAL	EFICIENCIA	OBSERVACIONES
1	31/07/2016	12/08/2016	J-134	T38 HEX35 R32	4085	3000	136.17%	
2	12/08/2016	26/08/2016	J-134	T38 HEX35 R32	4289	3000	142.97%	
3	26/08/2016	01/09/2016	j-134	R38 HEX32 R32	1900	3000	63.33%	DOBLADO DE BARRA

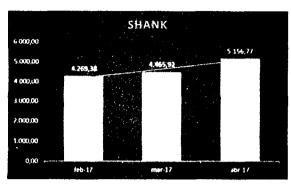
EFICIENCIA DE BARRAS J-134

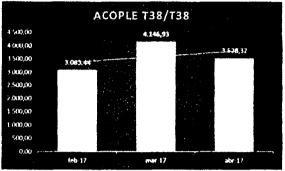


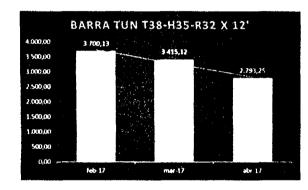
Cuadro 32.- Eficiencia de Barra en Equipo J-134

3. Equipo J-043

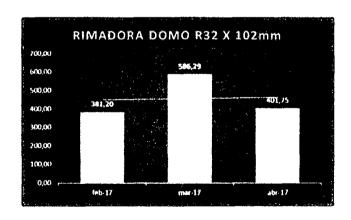
ITEMS	FECHA DE ENTREGA	FECHA DE ROTURA	EQUIPO	BARRA	RENDIMIENTO	OBJETIVO NORMAL	EFICIENCIA	OBSERVACIONES
1	07/08/2016	14/08/2016	J-043	T38 HEX35 R32	3529	3000	117.63%	
2	14/08/2016	25/08/2016	J-043	T38 HEX35 R32	5211	3000	173.70%	
3	25/08/2016	29/08/2016	J-043	R38 HEX32 R32	1718	3000	57.27%	DOBLADO DE BARRA
4	29/08/2016	03/09/2016	J-043	R38 HEX32 R32	1935	3000	64.50%	DOBLADO DE BARRA

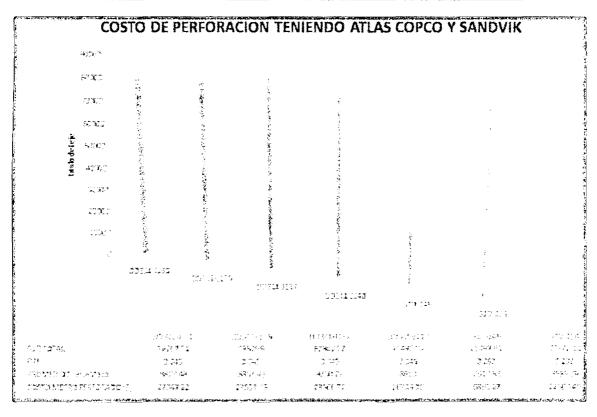

EFICIENCIA DE BARRAS J-043




Cuadro 33.- Eficiencia de Barra en Equipo J-043

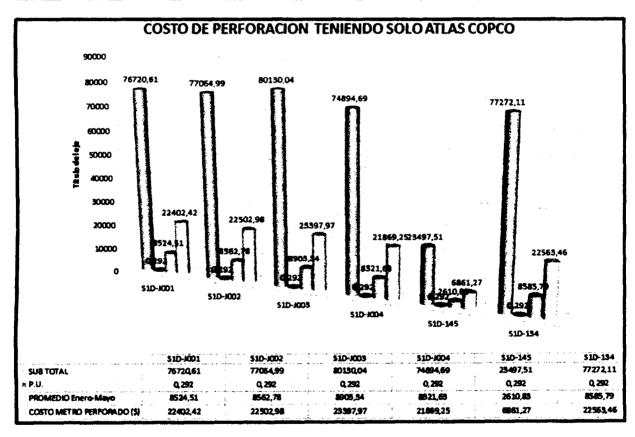
Tal como se muestra en los cuadros arriba mencionados se muestra de color rojo la fila con un rendimiento bajo siendo este una barra de marca BOARD R38 HEX32 R32 con doblado y rotura cerca a la rosca R32.


		2017				
DESCRIPCION	feb-17	mar-17	abr-17	PROMEDIO	OBJETIVO	EFICIENCIA
ACOPLE T38/T38	3.083,44	4.146,93	3.528,32	3.586,23	3.500,00	102,46%
BARRA TUN T38-H35-R32 X 12'	3.700,13	3.415,12	2.793,25	3.302,83	3.000,00	110,09%
BROCA	584,23	795,30	663,74	681,09	600,00	113,52%
RIMADORA DOMO R32 X 102mm	381,20	586,29	401,75	456,41	300,00	152,14%
SHANK	4.269,38	4.465,92	5.156,77	4.630,69	3.500,00	132,31%

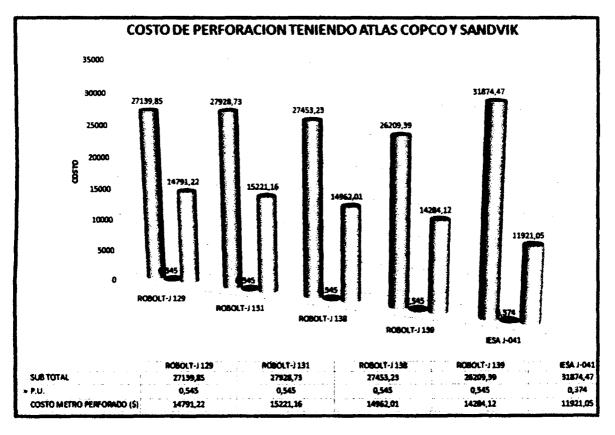


EVALUACION DE COSTOS DE LA COLUMNA DE PERFORACION DE EQUIPO SANDVIK Y ATLAS COPCO

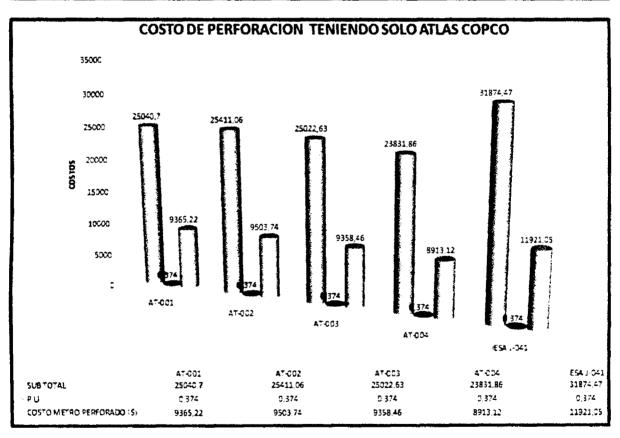
FRONTONERO - AVANCE


FALTA COSTO PERFORACION TENIENDO SOLO SANDVIK

COSTO	COSTO DE PERFORACION TENIENDO ATLAS COPCO Y SANDVIK						
	ı			,			
EQUIPOS	EQUIPOS	SUB TOTAL	P.U.	PROMEDIO	COSTO METRO		
VOLCAN	EQUIT 03	300 101712	1 .0.	Enero-Mayo	PERFORADO (\$)		
	DD311-J130	79267,31	0,345	8807,48	27347,22		
SANDVIK	DD311-J135	79806,9	0,345	8867,43	27533,38		
SANDVIK	DD311-J137	82802,02	0,345	9200,22	28566,70		
	DD311-J140	77490,04	0,345	8610	26734,06		
ATLAS	S1D-145	23497,51	0,292	2610,83	6861,27		
COPCO	S1D-134	77272,11	0,292	8585,79	22563,46		
TOTAL METROS PERFORADOS		420135,89			139606,09		
TOTAL METROS RIMADOS		25386,96					


Cuadro 34.- Variación de costo en el equipos de perforación Frontonero (Equipo Sandvik + Atlas Copco)

COST	O DE PERFO	PRACION TE	NIENDO SO	LO ATLAS CO	OPCO
EQUIPOS VOLCAN	EQUIPOS	SUB TOTAL	P.U.	PROMEDIO Enero-Mayo	COSTO METRO PERFORADO (\$)
	S1D-J001	76720,61	0,292	8524,51	22402,42
	S1D-J002	77064,99	0,292	8562,78	22502,98
ATLAS	S1D-J003	80130,04	0,292	8903,34	23397,97
СОРСО	S1D-J004	74894,69	0,292	8321,63	21869,25
	S1D-145	23497,51	0,292	2610,83	6861,27
	S1D-134	77272,11	0,292	8585,79	22563,46
TOTAL METROS PERFORADOS		409579,95			119597,35


Cuadro 35 .- Variación de costo en el equipos de perforación Frontonero (Equipo Atlas Copco)

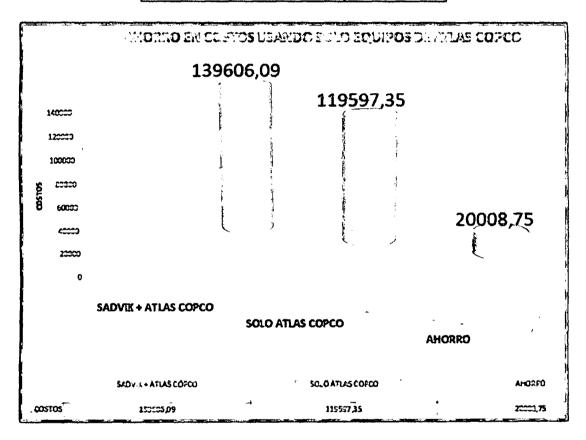
COSTO DE P	ERFORACION TEN	NENDO ATLA	S COPCO Y	SANDVIK
EQUIPOS VOLCAN	EQUIPOS	SUB TOTAL	P.U.	COSTO METRO PERFORADO (\$)
	ROBOLT-J 129	27139,85	0,545	14791,22
SANDVIK	ROBOLT-J 131	27928,73	0,545	15221,16
SAINDVIK	ROBOLT-J 138	27453,23	0,545	14962,01
	ROBOLT-J 139	26209,39	0,545	14284,12
ATLAS COPCO	IESA J-041	31874,47	0,374	11921,05
TOTAL METROS PERFORADOS		140605,67		71179,56

Cuadro 36.- Variación de costo en el equipos de perforación Sostenimiento (Equipo Sandvik + Atlas Copco)

COSTO DI	PERFORACION	TENIENDO S	OLO ATLAS	СОРСО
EQUIPOS VOLCAN	EQUIPOS	SUB TOTAL	P.U.	COSTO METRO PERFORADO (\$)
	AT-001	25040,7	0,374	9365,22
	AT-002	25411,06	0,374	9503,74
ATLAS COPCO	AT-003	25022,63	0,374	9358,46
	AT-004	23831,86	0,374	8913,12
	IESA J-041	31874,47	0,374	11921,05
TOTAL METROS				
PERFORADOS				49061,59

Cuadro 37.- Variación de costo en el equipos de perforación Sostenimiento (Equipo Atlas Copco)

5.2. DISCUCIONES DE LOS RESULTADOS


Como se muestra en el cuadro 6.2, se observa que al realizar el análisis de costos unitarios entre los equipos de perforación Atlas Copco y Sandick, se puede observar que se tiene un ahorro de 20 008.75 y 22 117. 96 USS mensuales sumando en 42 126. 71 dólares acumulados, proyectándose en un ahorro de 100 000. 00 dólares ahorrados anualmente.

Que serán volcados a la ejecución práctica, para la comprensión clara y explícita, generales de expresar los aspectos fundamentales y alcances del proyecto y así encontrar su rentabilidad y decidir su contribución teniendo en cuenta el criterio técnico sobre los resultados que se pretende alcanzar.

La evaluación de los resultados que se obtienen en la voladura donde la evaluación de los P.U. entre ambos equipos de perforación, se puede obtener un ahorro de 0.053 y 0.171 USS por cada metro perforado, es muy importante, realizar el análisis técnico – económico. De acuerdo a la más moderna tecnología en voladura de rocas, dando un resultado en la reducción de costos y mejorando la FRAGMENTACION de roca, ya que esta influirá directamente en la producción y productividad de las operaciones mineras.

FRONTONERO - AVANCE

AHORRO EN COSTOS			
EQUIPOS	COSTOS		
SADVIK + ATLAS COPCO	139606,09		
SOLO ATLAS COPCO	119597,35		
AHORRO	20008,75		

Cuadro 38.- Ahorro en costo del equipos de perforación FRONTONERO

SOSTENIMIENTO

AHORRO EN COST	ros			
EQUIPOS COSTOS				
SADVIK + ATLAS COPCO	71179,56			
SOLO ATLAS COPCO	49061,59			
AHORRO	22117,97			

Cuadro 39.- Ahorro en costo del equipos de perforación SOSTENIMIENTO

Fuente: elaboración Propia.

CMP FRONTONEROZ - AHORRADO	20008.75
CMP SOSTENIMIENTO - AHORRADO	22117.96
AHORRO TOTAL	\$ 42,126.71

Cuadro 40 - Ahorro total

CONCLUSIONES

- Como se muestra en el cuadro 6.2, se observa que al realizar el análisis de costos unitarios entre los equipos de perforación donde se puede observar usando solo equipo Atlas copco, se tiene un ahorro de 42 126.
 USS acumulados, proyectándose a un ahorro de 100 000 .00 de dólares ahorrado por metro perforado.
- 2. Al realizar evaluación de los P.U. entre las columnas de perforación de ambos equipos se puede obtener un ahorro de 0.053 y 0.171 USS por cada metro perforado de producción de mineral o desmonte.
- 3. Una buena evaluación de aceros de perforación da como resultado buena fragmentación, un buen avance, y menor consumo de energía por los equipos, mayor performance de carguío a los camiones y por ende baja los costos.
- La buena elección de equipo de perforación da como resultado una buena eficiencia en la perforación, rendimiento de aceros y un ahorro en costos de perforación.

RECOMENDACIONES

- Se recomienda cambiar los equipos Sandvik por equipos atlas Copco, ya
 que demuestra mayor rendimiento y mayor ahorro en costos de
 producción hasta realizar estudio de otras Columnas de Perforación que
 demuestren ser mejor rendimiento y mayor ahorro.
- 2. Se recomienda realizar la evaluación constante de los parámetros de perforación en los equipos, en las etapas de minado con el la cual se logrará bajar el tiempo de perforación y alargar la vida útil de la columna de perforación y un ahorro en el trabajo con aceros de perforación.
- Se recomienda a la empresa Rock Tools Perú S.A.C. implantarse en las labores a fin realizar el control de los equipos y de la columna completa para disminuir los costos en el ciclo minado de perforación.
- 4. Dar a conocer a la empresa, sobre el rendimiento de los equipos y su ahorro, para su respectiva toma de decisiones; del mismo modo capacitar a los operadores en temas de uso correcto de aceros de perforación.

REFERENCIA BIBLIOGRAFÍA

- Agreda Carlos (1993). Curso de modelización matemática dela voladura de rocas - Sociedad Peruana de Perforación y Voladura de Rocas.
- EXSA EXPLOSIVOS S.A.C Catalogo Lima 2002 "Manual Técnico de Voladura EXSA.
- FAMESA EXPLOSIVOS S.A.C Catalogo Lima 2002 "Manual Técnico de Voladura Famesa.
- GEOCATMIN BOLETIN Nº 24, lima (1993) Sistema Minera Catastral –
 INGEMET Geología de Cuadrangulos.
- MINERA VOLCAN UNIDAD ANDAYCHAGUA (2015) "Área de planeamiento y Geomecanica" Andaychagua.
- MINERA BARRICK UNIDAD MISQUICHILCA S.A (2002) "Manual de Procedimientos Estándar Tarea".

ANEXOS

Imagen 01. Evaluación de labor

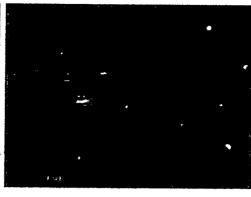


Imagen 02. Perforación en avance

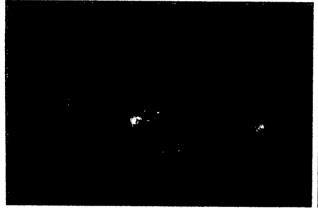


Imagen 03. Inicio del pintado de malla

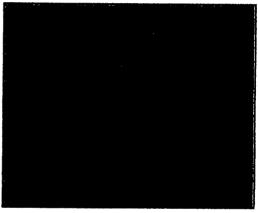


Imagen 04. Distancia efectiva de perforación

Imagen 05. Evaluación de RPM

Imagen 06. Evaluación de RPM de Shank

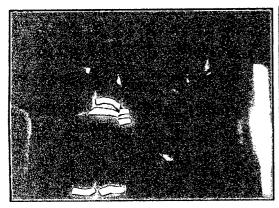


Imagen 07. Capacitación al operador

Imagen 08. Evaluación de Brocas en taller de superficie

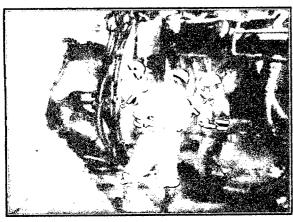


Imagen 09. Capacitación al operador

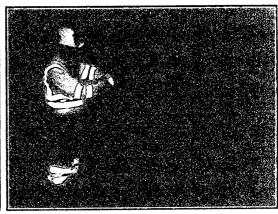


Imagen 10. Evaluación de columna del equipo de perforación.

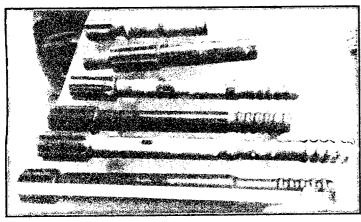


Imagen 11. Medición del dimension-Shank

Imagen 12 Variedad de Shank

Imagen 13. Variedad de Brocas

Imagen 14. Forma de transporte de brocas

nagen 15 y 16. Evaluación de Columna del equipo de perforación