Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Espillco Quintanilla, Freud Watson"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Determinación de fisuras y grietas en estructuras de concreto mediante el procesamiento de imágenes utilizando un modelo de redes neuronales artificiales en la provincia de Huamanga, 2024
    (Universidad Nacional de San Cristóbal de Huamanga, 2024) Espillco Quintanilla, Freud Watson; Lizarbe Alarcón, Hemerson
    Actualmente, diversas razones han provocado que los puentes de concreto armado con más de 25 años de antigüedad presenten fisuras y grietas. Estos factores incluyen la falta de control de calidad, el mantenimiento insuficiente, las cargas móviles, las cargas muertas y la fatiga sísmica. En esta investigación, proponemos una metodología alternativa al mantenimiento manual para prolongar la vida útil de estas estructuras. En esta investigación utilizamos un modelo predictivo basado en una red neuronal ANN(Artificial Neuron network) mas específicamente una red neuronal Convolucional CNN para poder determinar y clasificar fisuras y grietas en estructuras de concreto en la provincia de Huamanga, departamento de Ayacucho a partir de fotografías y videos. Se seleccionaron fotografías de diferentes ángulos, perspectivas de los elementos estructurales, almacenarlos, limpiarlos y seleccionarlos para su posterior entrenamiento en un modelo de de redes neuronales artificiales, para poder realizar el entrenamiento de la red neuronal convolucional se utilizo el 70% de datos y el restante 30% para comprobación de la red neuronal convolucional. La arquitectura de nuestra red tiene una capa de entrada llamada Input data donde ingresamos las fotografías y la capa de convolucion se encarga de aprender patrones de las fotografias procesadas, luego en la capa oculta (Hiddenlayer) se encarga de determinar por pixeles que significa cada elemento de la fotografía técnicamente hablando convoluciona para finalmente entender de que trata la fotografía y sus pixeles, luego esta la capa de salida (Output Data) que nos clasificara que tipo de imagen es de acuerdo a los datos entrenados anteriormente. Concluyendo, mediante la aplicación de redes neuronales convolucionales utilizando fotografías digitales, se logró detectar fisuras y grietas en los elementos estructurales de concreto armado. Esto permitirá su posterior mantenimiento y operación del mismo.

dggggg

sws

Este repositorio, elaborado en base a software Dspace, recopila la documentación y publicaciones institucionales, producto de la investigación y el desempeño en defensa de la competencia, la propiedad intelectual y protección al consumidor, para su difusión en el entorno social y académico.

 

Ubícanos

  • Av. independencia S/N - Ciudad Universitaria
  • Email: repositorio@unsch.edu.pe
  • repositorio@unsch.edu.pe
  • Horario Lunes - Viernes 8:00 a 15:00 h

Repositorio

  • Políticas
  • Formatos
  • Manuales

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback