Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tenorio Huarancca, Diego Omar"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Propuesta de modelo de tráfico vehicular, mediante redes neuronales artificiales, para reducir la congestión vehicular en el Jirón Carlos F. Vivanco, Ayacucho, 2024
    (Universidad Nacional de San Cristóbal de Huamanga, 2025) Tenorio Huarancca, Diego Omar; Lizarbe Alarcón, Hemerson
    La presente investigación desarrolló un modelo de tráfico vehicular basado en redes neuronales artificiales para reducir la congestión en el Jirón Carlos F. Vivanco, Ayacucho, una zona crítica debido a su diseño colonial incompatible con el tránsito moderno. La investigación se estructuró en tres objetivos específicos: El diseño de una arquitectura robusta para detección vehicular en condiciones heterogéneas que incluyen tráfico variable, diversas condiciones ambientales (precipitaciones, iluminación solar variable, sombras proyectadas) y entornos nocturnos con visibilidad limitada; la optimización del entrenamiento del modelo para lograr alta precisión clasificatoria; y el desarrollo de un algoritmo de optimización dinámica de ciclos semafóricos. Metodológicamente, se implementó la arquitectura YOLO (You Only Look Once), entrenada durante 126 épocas mediante la técnica de Early Stopping, y se utilizaron herramientas como LabelMe para el etiquetado del conjunto de datos. El modelo alcanzó métricas sobresalientes: Precisión del 88.7%, valores de recall de 0.832 (validación) y 0.834 (evaluación), con tiempos de procesamiento ultrarrápidos. El sistema optimizó los ciclos semafóricos según la densidad vehicular, asignando tiempos diferenciados para densidades bajas, medias y altas. Los resultados demostraron la eficacia del modelo integrado para mejorar la movilidad urbana, reducir el impacto ambiental y optimizar infraestructura vial existente, estableciendo un precedente metodológico para implementar sistemas de transporte inteligente en contextos locales específicos.

dggggg

sws

Este repositorio, elaborado en base a software Dspace, recopila la documentación y publicaciones institucionales, producto de la investigación y el desempeño en defensa de la competencia, la propiedad intelectual y protección al consumidor, para su difusión en el entorno social y académico.

 

Ubícanos

  • Av. independencia S/N - Ciudad Universitaria
  • Email: repositorio@unsch.edu.pe
  • repositorio@unsch.edu.pe
  • Horario Lunes - Viernes 8:00 a 15:00 h

Repositorio

  • Políticas
  • Formatos
  • Manuales

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback