Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Apari Quispe, Michael"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    “Aproximación numérica de integrales impropias e integrandos discontinuos”
    (Universidad Nacional de San Cristóbal de Huamanga, 2022) Apari Quispe, Michael; Paiva Yanayaco, Daúl Andrés
    Las integrales impropias así como las integrales de funciones singulares aparecen en diversos problemas de aplicación y el calcular su valor se enmarca dentro de la matemática aplicada, sin embargo las condiciones que deben cumplir ciertas funciones que actúan como integrando también las hace ubicarse dentro del análisis funcional, pues se exige que determinadas funciones estén en espacios como Cⁿ (I) o en el caso de que se requiera emplear polinomios ortogonales, dichas funciones deben estar en el espacio L² (I) y las funciones peso deben satisfacer la no negatividad. Desde buen tiempo hasta la actualidad han sido estudiado diversos métodos de aproximación de dichas integrales. En la actualidad,muchos autores abordan el problema a través de métodos de elementos de contorno, especificando que los métodos funcionan para casos específicos de funciones. Es por ello que el tratamiento de estas integrales aveces exige sus propios métodos o formas de solución. En la minimización del error se buscan siempre nuevos métodos de aproximación que nos de muy buenos resultados a un costo muy bajo, es decir, menos cálculos numéricos. De hechoque también las fórmulas de cuadratura de Gauss ofrecen esa alternativa pero para algunas funciones. En este trabajo de investigación nos limitaremos al cálculo de funciones, como las eulerianas, las variaciones muy altas, o de mucho contraste que con los métodos de expansión de Taylor y cambios de variable se puede suavizar una función.

dggggg

sws

Este repositorio, elaborado en base a software Dspace, recopila la documentación y publicaciones institucionales, producto de la investigación y el desempeño en defensa de la competencia, la propiedad intelectual y protección al consumidor, para su difusión en el entorno social y académico.

 

Ubícanos

  • Av. independencia S/N - Ciudad Universitaria
  • Email: repositorio@unsch.edu.pe
  • repositorio@unsch.edu.pe
  • Horario Lunes - Viernes 8:00 a 15:00 h

Repositorio

  • Políticas
  • Formatos
  • Manuales

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback