"El teorema de Poincaré - Bendixson en el plano y la esfera"
Loading...
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de San Cristóbal de Huamanga
Abstract
En este trabajo se analiza en detalle la demostración del teorema de Poincaré-Bendixson para campos vectoriales en el plano y en la esfera, luego se presenta algunas consecuencias y ejemplos. Este resultado es sumamente importante en la teoría cualitativa de las ecuaciones diferenciales ordinarias, porque localiza en una determinada región la existencia de órbitas periódicas, ayudando de manera implícita a conocer el comportamiento cualitativo de la ecuación diferencial en estudio. Además, es importante por sus aplicaciones en la física, biología y matemáticas. El esquema de desarrollo de este trabajo es como sigue: El capítulo uno se presenta de manera breve e ilustrativa los conceptos básicos de campos vectoriales continuos sobre Rⁿ. Luego, se analiza las demostraciones de las propiedades fundamentales de los conjuntos límites y órbitas periódicas acompañados con ejemplos para su mejor comprensión. El capítulo dos presenta la definición de un campo vectorial sobre una superficie en R³, el teorema de existencia y unicidad. Luego, se analizará la topología de los conjuntos límites, con sus respectivas demostraciones. El capítulo tres está dedicado al análisis de la demostración del Teorema de Poincaré-Bendixson en el plano, pero antes se presenta el teorema de flujo tubular para campos vectoriales en R². Finalmente se presentarán algunas consecuencias inmediatas y ejemplos. El capítulo cuatro centra su estudio en el análisis de la demostración del Teorema de Poincaré-Bendixson en la esfera unitaria, pero antes se presenta una versión semejante al teorema del flujo tubular para campos vectoriales sobre la esfera. Finalmente se presentarán algunas consecuencias inmediatas y ejemplos. Por otro lado se incluye un apéndice del tema denominado Lema de Zorn.
Description
Keywords
Poincaré-Bendixson, Teorema, Ecuaciones diferenciales, Conjunto límite, Órbita periódica, Esfera, Lema de Zorn