ESCUELA PROFESIONAL DE CIENCIAS FÍSICO-MATEMÁTICAS
Permanent URI for this collection
Browse
Browsing ESCUELA PROFESIONAL DE CIENCIAS FÍSICO-MATEMÁTICAS by Author "Gomez Muñoz, Edgar"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item El teorema de la variedad cociente y aplicaciones a la geometría diferencial(Universidad Nacional de San Cristóbal de Huamanga, 2024) Gomez Muñoz, Edgar; Condori Huamán, Alexander PaulEn un mismo conjunto pueden convivir varias estructuras que hacen de este conjunto un elemento especial de estudio y en la atención de los matemáticos. En particular, en una variedad diferenciable puede existir además, por ejemplo, una estructura de grupo. Esto da origen a los llamados Grupos de Lie. En estas variedades, la estructura de grupo no puede estar desligada de la estructura diferenciable. El objetivo principal de este trabajo es detallar la demostración del Teorema de la variedad cociente, el cual establece que el cociente de una variedad diferenciable por una acción de grupo es nuevamente una variedad diferenciable. El tipo de estudio que proponemos es cuantitativo, junto a un nivel de investigación descriptivo y un diseño de investigación no experimental. Como resultado, logramos detallar exitosamente la demostración del Teorema 3.1 (Teorema de la variedad cociente), para acciones diferenciables, libres y propias, de G (grupo de Lie) en una variedad diferenciable M.